392,000 would be the nearest <span>hundred thousand</span>
Answer:
We cannot say that the mean wake time are different before and after the treatment, with 98% certainty. So the zopiclone doesn't appear to be effective.
Step-by-step explanation:
The goal of this analysis is to determine if the mean wake time before the treatment is statistically significant. The question informed us the mean wake time before and after the treatment, the number of subjects and the standard deviation of the sample after treatment. So using the formula, we can calculate the confidence interval as following:
![IC[\mu ; 98\%] = \overline{y} \pm t_{0.99,n-1}\sqrt{\frac{Var(y)}{n}}](https://tex.z-dn.net/?f=IC%5B%5Cmu%20%3B%2098%5C%25%5D%20%3D%20%5Coverline%7By%7D%20%5Cpm%20t_%7B0.99%2Cn-1%7D%5Csqrt%7B%5Cfrac%7BVar%28y%29%7D%7Bn%7D%7D)
Knowing that
:
![IC[\mu ; 98\%] = 98.9 \pm 2.602\frac{42.3}{4} \Rightarrow 98.9 \pm 27.516](https://tex.z-dn.net/?f=IC%5B%5Cmu%20%3B%2098%5C%25%5D%20%3D%2098.9%20%5Cpm%202.602%5Cfrac%7B42.3%7D%7B4%7D%20%5CRightarrow%2098.9%20%5Cpm%2027.516)
![IC[\mu ; 98\%] = [71.387 ; 126,416]](https://tex.z-dn.net/?f=IC%5B%5Cmu%20%3B%2098%5C%25%5D%20%3D%20%5B71.387%20%3B%20126%2C416%5D)
Note that
so we cannot say, with 98% confidence, that the mean wake time before treatment is different than the mean wake time after treatment. So the zopiclone doesn't appear to be effective.
The problem is asking how much each person will need to pay. Simplifying the problem into an equation with variables (an algorithm) will greatly help you solve it:
S = Sales Tax = $ 7.18 per any purchase
A = Admission Ticket = $ 22.50 entry price for one person (no tax applied)
F = Food = $ 35.50 purchases for two people
We know the cost for one person was: (22.50) + [(35.50/2) + 7.18] =
$ 47.43 per person. Now we can check each method and see which one is the correct algorithm:
Method A)
[2A + (F + 2S)] / 2 = [ (2)(22.50) + [35.50 + (2)(7.18)] ]/ 2 = $47.43
Method A is the correct answer
Method B)
[(2A + (1/2)F + 2S) /2 = [(2)(22.50) + 35.50(1/2) + (2)7.18] / 2 = $38.55
Wrong answer. This method is incorrect because the tax for both tickets bought are not being used in the equation.
Method C)
[(A + F) / 2 ]+ S = [(22.50 + 35.50) / 2 ] + 7.18 = $35.93
Wrong answer. Incorrect Method. The food cost is being reduced to the cost of one person but admission price is set for two people.