Answer with Step-by-step explanation:
We are given that n and m are two integers
We have to prove that if n-m is even , then
is also even.
We know that sum of two odd numbers is even.Sum of an odd number and even number is odd.
Product of an odd number and even number is even.
Case 1.Suppose m and n are both even n=4 , m=2


Case 2.Suppose m odd and n odd
n=9,m=5


Hence, proved.
Given :-
- The general term of a sequence is given by aₙ=43-3(n-1) .
To Find :-
- The first four terms of the sequence.
Solution :-
The given expression is 
→ aₙ=43-3(n-1)
where n > 0
<u>Finding</u><u> the</u><u> </u><u>first </u><u>term </u><u>:</u>
Substituting n = 1 , we have ,
→ T1 = 43 - 3(1-1)
→ T1 = 43 - 3*0
→ T1 = 43 - 0 = 43
<u>Finding</u><u> the</u><u> </u><u>second</u><u> </u><u>term </u><u>:</u>
Substituting n = 2 , we have,
→ T2 = 43 -3(2-1)
→ T2 = 43 -3*1
→ T2 = 43 -3 = 40
<u>Finding</u><u> </u><u>the </u><u>third </u><u>term</u><u> </u><u>:</u>
Substituting n = 3 , we have,
→ T3 = 43 -3(3-1)
→ T3 = 43 -3*2
→ T3 = 43 -6 = 37
<u>Finding</u><u> the</u><u> </u><u>fourth</u><u> </u><u>term </u><u>:</u>
→ T4 = 43 -3(4-1)
→ T4 = 43 -3*3
→ T4 = 43-9 = 34
<u>Hence</u><u> the</u><u> </u><u>first</u><u> </u><u>four</u><u> terms</u><u> of</u><u> </u><u>the</u><u> </u><u>sequence</u><u> </u><u>are </u><u>4</u><u>3</u><u> </u><u>,</u><u> </u><u>4</u><u>0</u><u> </u><u>,</u><u> </u><u>37</u><u> </u><u>and </u><u>34</u><u> </u><u>.</u>
<em>I </em><em>hope</em><em> this</em><em> helps</em><em> </em><em>.</em><em> </em><em>Let </em><em>me</em><em> know</em><em> if</em><em> you</em><em> </em><em>need </em><em>further</em><em> </em><em>clarification</em><em> </em><em>.</em>
Answer:
23 min 30 sec
Step-by-step explanation:
First, you add 35 + 14 + 18 + 27 which is 94.
Next, you divide 94 by the number of deliveries there were. Which is 4.
94/4 = 23.5.
So your answer would be 23 minutes and 30 seconds.
I Hope This Helped :D
Answer:
Exact Form:
73 over 2
Decimal Form:
36.5
Mixed Number Form:
36 1 over 2
Step-by-step explanation:
Substitute the value of the variable into the equation and simplify.