1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bond [772]
4 years ago
7

Simplify the following expression: (−1)(−7)(4) 12 28 −12 −28

Mathematics
2 answers:
EastWind [94]4 years ago
4 0
28 is your answer I just took the test
Alex_Xolod [135]4 years ago
3 0
28 is the correct answer!!!!!
You might be interested in
in a classroom 1/6 of the students are wearing blue shirts, ans 2/3 are wearing white shirts. There ade 36 students in the class
castortr0y [4]
56 should be correct
4 0
3 years ago
1. cot x sec4x = cot x + 2 tan x + tan3x
Mars2501 [29]
1. cot(x)sec⁴(x) = cot(x) + 2tan(x) + tan(3x)
    cot(x)sec⁴(x)            cot(x)sec⁴(x)
                   0 = cos⁴(x) + 2cos⁴(x)tan²(x) - cos⁴(x)tan⁴(x)
                   0 = cos⁴(x)[1] + cos⁴(x)[2tan²(x)] + cos⁴(x)[tan⁴(x)]
                   0 = cos⁴(x)[1 + 2tan²(x) + tan⁴(x)]
                   0 = cos⁴(x)[1 + tan²(x) + tan²(x) + tan⁴(4)]
                   0 = cos⁴(x)[1(1) + 1(tan²(x)) + tan²(x)(1) + tan²(x)(tan²(x)]
                   0 = cos⁴(x)[1(1 + tan²(x)) + tan²(x)(1 + tan²(x))]
                   0 = cos⁴(x)(1 + tan²(x))(1 + tan²(x))
                   0 = cos⁴(x)(1 + tan²(x))²
                   0 = cos⁴(x)        or         0 = (1 + tan²(x))²
                ⁴√0 = ⁴√cos⁴(x)      or      √0 = (√1 + tan²(x))²
                   0 = cos(x)         or         0 = 1 + tan²(x)
         cos⁻¹(0) = cos⁻¹(cos(x))    or   -1 = tan²(x)
                 90 = x           or            √-1 = √tan²(x)
                                                         i = tan(x)
                                                      (No Solution)

2. sin(x)[tan(x)cos(x) - cot(x)cos(x)] = 1 - 2cos²(x)
              sin(x)[sin(x) - cos(x)cot(x)] = 1 - cos²(x) - cos²(x)
   sin(x)[sin(x)] - sin(x)[cos(x)cot(x)] = sin²(x) - cos²(x)
                               sin²(x) - cos²(x) = sin²(x) - cos²(x)
                                         + cos²(x)              + cos²(x)
                                             sin²(x) = sin²(x)
                                           - sin²(x)  - sin²(x)
                                                     0 = 0

3. 1 + sec²(x)sin²(x) = sec²(x)
           sec²(x)             sec²(x)
      cos²(x) + sin²(x) = 1
                    cos²(x) = 1 - sin²(x)
                  √cos²(x) = √(1 - sin²(x))
                     cos(x) = √(1 - sin²(x))
               cos⁻¹(cos(x)) = cos⁻¹(√1 - sin²(x))
                                 x = 0

4. -tan²(x) + sec²(x) = 1
               -1               -1
      tan²(x) - sec²(x) = -1
                    tan²(x) = -1 + sec²
                  √tan²(x) = √(-1 + sec²(x))
                     tan(x) = √(-1 + sec²(x))
            tan⁻¹(tan(x)) = tan⁻¹(√(-1 + sec²(x))
                             x = 0
5 0
3 years ago
What’s the solution to 4a-5<3a+2
Ksivusya [100]

Answer:

a<7

Step-by-step explanation:

Move all like terms to one side:

4a-3a<2+5

Simplify:

a<7

<em>~Happy Holidays~ :)</em>

6 0
4 years ago
Read 2 more answers
GOD BLESS YOU!!!!!!!!!!!!!!!!<br><br>​
Gnom [1K]

Answer:

GOD BLESS YOU TOO!!!

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Michael owns dogs hamsters and fish in the ratio 2:3:6 he has 2 more hamsters than dogs how many fish does Michael have
IRISSAK [1]
12 because 6 is 2 more than 4 which means you would have to add everything by themselves so 2 would be 4 3 would be 6 and 6 would be 12
8 0
3 years ago
Other questions:
  • At the library, there is a four-hour span of time to use a computer. The time slots are 1/3 hour long. How many time slots are t
    13·1 answer
  • A farmer planted corn in a square field. one side of the field measure 32 yards. what is the area of the cornfield? show your wo
    13·1 answer
  • Write the function for the graph.<br> (1,12)<br> (0,3)
    7·1 answer
  • What is/ how do you calculate the vertex for a parabola with this equation: y=-1x^2 13x?
    13·1 answer
  • Prove, or find a counterexample: "if m is odd," then 4m – 3 "is odd."
    7·1 answer
  • James and sarah went out to lunch the price of lunch for both of them was $20 they tip their server 20% of that amount how much
    13·1 answer
  • Answers are
    10·2 answers
  • The vertices of the parallelogram below are given. Use matrices to find the area.
    12·1 answer
  • A plant is growing at a constant rate. The plant was 4 cm tall after 1 month. The
    5·1 answer
  • How is using the x-factor helpful in solving quadratic equations? provide examples and explain why?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!