<h3>Answer:</h3>
100 g O₂
<h3>General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] CH₄ + 2O₂ → CO₂ + 2H₂O
[Given] 2 mol CH₄
[Solve] x g O₂
<u>Step 2: Identify Conversions</u>
[RxN] 1 mol CH₄ → 2 mol O₂
[PT] Molar Mass of O - 16.00 g/mol
Molar Mass of O₂ - 2(16.00) = 32.00 g/mol
<u>Step 3: Stoichiometry</u>
- Set up conversion:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 1 sig fig.</em>
128 g O₂ ≈ 100 g O₂
The keyword here is gas condenses to a liquid, which mean we're talking about condensation process
The enthalpy energy in condensation process is negative because it releases energy
The entropy in general will also decreases .
Temperature affect this change because it will create free energy if added with this result
hope this helps
100°C is 273 kelvins.
1°C is 2.73 kelvins.
I guess the closest would be north pole