Answer:
y = 46
Step-by-step explanation:
I'm assuming you wanted to solve for y.
x = 5
y = 8(5) + 6
y = 40 +6
y = 46
Answer:
7 years 11 months
Step-by-step explanation:
The future value formula for the value of a principal P invested at annual rate r compounded n times yearly for t years is ...
FV = P(1 +r/n)^(nt)
For the given numbers, we want to find t:
6000 = 3700(1 +.062/2)^(2t)
Dividing by 3700 and taking the logarithm, we get ...
6000/3700 = 1.031^(2t)
log(60/37) = 2t·log(1.031)
Dividing by the coefficient of t gives ...
t = log(60/37)/(2log(1.031)) ≈ 7.92 . . . . . years
It will take about 7 years 11 months for the investment to grow to $6000.
With these transversals across parallel lines the angles are either congruent or supplementary (adding to 180) and its pretty easy to figure out which is which, obtuse verse acute in the figure.
Each yellow circle indicates x and the path to the next square. So for example the Start has alternate interior angles, which are congruent, so x is 141 degrees.
<h3>
Answer:</h3>
- C. (9x -1)(x +4) = 9x² +35x -4
- B. 480
- A. P(t) = 4(1.019)^t
Step-by-step explanation:
1. See the attachment for the filled-in diagram. Adding the contents of the figure gives the sum at the bottom, matching selection C.
2. If we let "d" represent the length of the second volyage, then the total length of the two voyages is ...
... (d+43) + d = 1003
... 2d = 960 . . . . . . . subtract 43
... d = 480 . . . . . . . . divide by 2
The second voyage lasted 480 days.
3. 1.9% - 1.9/100 = 0.019. Adding this fraction to the original means the original is multiplied by 1 +0.019 = 1.019. Doing this multiplication each year for t years means the multiplier is (1.019)^t.
Since the starting value (in 1975) is 4 (billion), the population t years after that is ...
... P(t) = 4(1.019)^t
The answer to t is t= 21/2