
Let's solve ~



Now, since the base on both sides are equal, therefore their exponents are equal as well ~



or

Hope you got the required Answer ~
the difference of 67.2 and 23.9 is 43.3
Answer: 90% confidence interval is; ( - 0.0516, 0.3752 )
Step-by-step explanation:
Given the data in the question;
n1 = 72, n2 = 17
P1 = 54 / 72 = 0.75
P2 = 10 / 17 = 0.5882
so
P_good = 0.75
P_bad = 0.5882
standard ERRROR will be;
SE = √[(0.75×(1-0.75)/72) + (0.5882×(1-0.5882)/17)]
SE = √( 0.002604 + 0.01424)
SE = 0.12978
given confidence interval = 90%
significance level a = (1 - 90/100) = 0.1, |Z( 0.1/2=0.05)| = 1.645 { from standard normal table}
so
93% CI is;
(0.75 - 0.5882) - 1.645×0.12978 <P_good - P_bad< (0.75 - 0.5882) + 1.645×0.12978
⇒0.1618 - 0.2134 <P_good - P_bad< 0.1618 + 0.2134
⇒ - 0.0516 <P_good - P_bad< 0.3752
Therefore 90% confidence interval is; ( - 0.0516, 0.3752 )
Answer:
Step-by-step explanation:
we know that
The simple interest formula is equal to
where
I is the Final Interest Value
P is the Principal amount of money to be invested
r is the rate of interest
t is Number of Time Periods
in this problem we have
Bank A
substitute in the formula above
Bank B
substitute in the formula above
Bank C
substitute in the formula above
Find the average interest gained from the three accounts in one year