sin(<em>θ</em>) + cos(<em>θ</em>) = 1
Divide both sides by √2:
1/√2 sin(<em>θ</em>) + 1/√2 cos(<em>θ</em>) = 1/√2
We do this because sin(<em>x</em>) = cos(<em>x</em>) = 1/√2 for <em>x</em> = <em>π</em>/4, and this lets us condense the left side using either of the following angle sum identities:
sin(<em>x</em> + <em>y</em>) = sin(<em>x</em>) cos(<em>y</em>) + cos(<em>x</em>) sin(<em>y</em>)
cos(<em>x</em> - <em>y</em>) = cos(<em>x</em>) cos(<em>y</em>) - sin(<em>x</em>) sin(<em>y</em>)
Depending on which identity you choose, we get either
1/√2 sin(<em>θ</em>) + 1/√2 cos(<em>θ</em>) = sin(<em>θ</em> + <em>π</em>/4)
or
1/√2 sin(<em>θ</em>) + 1/√2 cos(<em>θ</em>) = cos(<em>θ</em> - <em>π</em>/4)
Let's stick with the first equation, so that
sin(<em>θ</em> + <em>π</em>/4) = 1/√2
<em>θ</em> + <em>π</em>/4 = <em>π</em>/4 + 2<em>nπ</em> <u>or</u> <em>θ</em> + <em>π</em>/4 = 3<em>π</em>/4 + 2<em>nπ</em>
(where <em>n</em> is any integer)
<em>θ</em> = 2<em>nπ</em> <u>or</u> <em>θ</em> = <em>π</em>/2 + 2<em>nπ</em>
<em />
We get only one solution from the second solution set in the interval 0 < <em>θ</em> < 2<em>π</em> when <em>n</em> = 0, which gives <em>θ</em> = <em>π</em>/2.
The values of the functions are -1/ 4, 3/ 16 and 3/ 8 respectively.
<h3>What is a function?</h3>
A function is a rule or expression showing the relationship between a dependent and independent variable.
We have the function to be;
f(x) = 3/ 4(x + 2)
Let's find f(-5), substitute the value of x as -5
f(-5) = 3/ 4 ( -5 + 2)
f(-5) = 3/ 4 × -3
f(-5) = -1/ 4
f(2), substitute the value of x as 2
f(2) = 3/ 4(2 + 2)
f(2) = 3/ 4 (4)
f(2) = 3/ 16
f(4) = 3/ 4 ( 4 + 2)
f(4) = 3/ 4(6)
f(4) = 3/ 8
Thus, the values of the functions are -1/ 4, 3/ 16 and 3/ 8 respectively.
Learn more about functions here:
brainly.com/question/4025726
#SPJ1
Answer:
16 ft
Step-by-step explanation:
One of the other three sides is 12 ft. After that fence is subtracted from the total, there are 32 ft of fence left for the other two sides of the rectangle. That allows those sides to be 32 ft/2 = 16 ft long.
The rectangle can be 12 ft by 16 ft. The longer dimension is 16 ft.
Answer : 4 times
Here it's given that ,
- The height and base of the butterfly sitting on the stem (red butterfly) is two times greater than the height and base of the butterfly sitting on the flower .
And we need to find out how many times the area of red winged butterfly is greater than that of sitting on the flower (blue butterfly) .
Let us take ,
- base of blue butterfly be b
- height of blue butterfly be h
- Area be A .
Then ,
- base of red butterfly will be 2b .
- height of red butterfly will be 2h .
- Area be A' .
We know that ,
→ area of the triangle = 1/2 × base × height
So that ,
→ A/A' = (1/2 * b * h) ÷ (1/2 *2b *2h)
→ A/A' = bh/4bh
→ A/A' = 1/4
→ A' = 4A
<u>Henceforth</u><u> the</u><u> area</u><u> of</u><u> </u><u>blue</u><u> butterfly</u><u> is</u><u> </u><u>4</u><u> </u><u>times </u><u>greater</u><u> than</u><u> </u><u>that</u><u> of</u><u> </u><u>red </u><u>winged</u><u> butterfly</u><u> </u><u>.</u>
I hope this helps.