Answer:
q = 2p - 1/3
Step-by-step explanation:
2q + 2p = 1+5q
2q = 1+5q-2p
-3q=1-2p
-q = 1-2p/3
q= 2p-1/3
One way to solve this is to use Pythagorean theorem: the square of one leg of triangle plus square of other leg of the triangle equals c the hypotenuse (longest side of triangle). You might see this as the formula a^2 + b^2 = c^2, where a and b are the legs and c is the hypotenuse.
In this case, the legs are 3√2 and the hypotenuse is h.
Using the formula:
(3√2)² + (3√2)² = h²
18 + 18 = h²
h = 6
The other way to do this is with trigonometric angles.
Remember cosine is adjacent over hypotenuse.
cos(45°) = (3√2) / h
h = (3√2) / cos(45°)
h = 6
Answer:
562 = 85x +52
x is the number of days
Veronica traveled for 7 days
Step-by-step explanation:
562 = 85x + 52
510 = 85x Subtract 52 on both sides
6 = x Divide by 85 to isolate x
Even though Veronica only had to drive 52 miles on the last day of her trip, it still counts as a day of driving. Hence, she traveled 7 days in total.
Answer:
- translate down 3
- reflect across the horizontal line through A
Step-by-step explanation:
1. There are many transformations that will map a line to a parallel line. Translation either horizontally or vertically will do it. Reflection across a line halfway between them will do it, as will rotation 180° about any point on that midline.
In the first attachment, we have elected to translate the line down 3 units.
__
2. Again, there are many transformations that could be used. Easiest is one that has point A as an invariant point, such as rotation CW or CCW about A, or reflection horizontally or vertically across a line through A.
Any center of rotation on a horizontal or vertical line through A can also be used for a rotation that maps one line to the other.
In the second attachment, we have elected to reflect the line across a horizontal line through A.
Answer: The angles of ΔA'B'C are congruent to the corresponding parts of the original triangle.
Step-by-step explanation:
Given : Triangle ABC was rotated 90 degrees clockwise. Then it underwent a dilation centered at the origin with a scale factor of 4.
A rotation is a rigid transformation that creates congruent images but dilation is not a rigid transformation, it creates similar images but not congruent.
Also, the corresponding angles of similar triangles are congruent.
Therefore, The angles of ΔA'B'C are congruent to the corresponding parts of the original triangle.