Answer:
Taking into account photosynthesis, the evidence that best supports the law of energy conservation is energy is absorbed by chlorophyll and becomes chemical energy during photosynthesis (option 2).
Explanation:
Plants are autotrophic organisms, characterized by synthesizing their own nutrients by converting solar energy into chemical energy through photosynthesis.
During the process of photosynthesis, chloroplasts are capable of absorbing solar energy and converting it into glucose. This process involves the conversion of one type of energy into another.
With respect to the law of conservation of energy, it is necessary to consider:
- In the universe there is a constant amount of matter and energy, which is neither created nor destroyed, but transformed.
- Energy in an isolated system does not vary, unless it comes into contact with another system.
- The amount of energy that is absorbed and obtained is equivalent.
In photosynthesis, the chloroplast is not an isolated system, but has contact with the outside and is capable of absorbing the energy of the sun. This energy will be used to obtain a product, glucose, in an amount proportional to the amount of energy absorbed.
Regarding other options:
<em> 1. In photosynthesis, it is not </em><u><em>mechanical energy</em></u><em> that is transformed into chemical energy.</em>
<em> 3. </em><u><em>Oxygen is a product of photosynthesis</em></u><em>, during the process of chemical energy synthesis, from the combination of carbon dioxide, water and solar energy.</em>
<em> 4. It is true that the </em><u><em>sun gives off light energy that is absorbed by plants</em></u><em>, but it does not explain how this energy is transformed into chemical energy.</em>
<span>Meiosis is the prosess in which cells split</span><span />
Can I please have some more details, thanks
Answer:
a.The phenotypic proportions obtained after having the genotypes are 50% marbled seeds, 25% spotted and dotted seeds since they are codominant, 25% spotted seeds.
b. Taking into account the F1 genotypes in the previous point, the expected phenotypes for the first crossing are 100% marbled seeds and for the second crossing 100% dotted seeds.
Explanation:
Let's suppose:
Marbled allele: M
Spotted allele: S
Dotted allele: D
Allele for Clear: C
a. Because both crosses were between homozygous parents, the entire F1 genotype is the same.
For the first crossing the descendants have the MS genotype, and for the second crossing the descendants have the DC genotype. It is enough to make a Punnett square to obtain the different combinations of genotypes between the crossing of MS and DC.
Answer: Meristems contribute to both primary (taller/longer) and secondary (wider) growth. Explanation: Primary growth is controlled by root apical meristems or shoot apical meristems, while secondary growth is controlled by the two lateral meristems, called the vascular cambium and the cork cambium.
Explanation: