Answer:
(a) The probability that a single randomly selected value lies between 158.6 and 159.2 is 0.004.
(b) The probability that a sample mean is between 158.6 and 159.2 is 0.0411.
Step-by-step explanation:
Let the random variable <em>X</em> follow a Normal distribution with parameters <em>μ</em> = 155.4 and <em>σ</em> = 49.5.
(a)
Compute the probability that a single randomly selected value lies between 158.6 and 159.2 as follows:

*Use a standard normal table.
Thus, the probability that a single randomly selected value lies between 158.6 and 159.2 is 0.004.
(b)
A sample of <em>n</em> = 246 is selected.
Compute the probability that a sample mean is between 158.6 and 159.2 as follows:

*Use a standard normal table.
Thus, the probability that a sample mean is between 158.6 and 159.2 is 0.0411.
Answer:
hkhkhkkhhkkhhkhkhhkhkhkhhkkhkhkhhkhkhk777777
Step-by-step explanation:
I can’t see the image can you post it please or just tell me what the problem is
Answer:
10 books approx
Step-by-step explanation:
Step one:
Given data
Hight of cupboard= 1.21m
Thickness of book= 12.5cm
thickness in meters= 12.5/100= 0.125m
Required
The number of books need to fill the Cupboard
Step two:
the number of books can be computed as
= 1.21/0.125
=9.68 book
=10 books approx
<h3>Answer:</h3>
(x, y) ≈ (1.49021612010, 1.22074408461)
<h3>Explanation:</h3>
This is best solved graphically or by some other machine method. The approximate solution (x=1.49, y=1.221) can be iterated by any of several approaches to refine the values to the ones given above. The values above were obtained using Newton's method iteration.
_____
Setting the y-values equal and squaring both sides of the equation gives ...
... √x = x² -1
... x = (x² -1)² = x⁴ -2x² +1 . . . . . square both sides
... x⁴ -2x² -x +1 = 0 . . . . . polynomial equation in standard form.
By Descarte's rule of signs, we know there are two positive real roots to this equation. From the graph, we know the other two roots are complex. The second positive real root is extraneous, corresponding to the negative branch of the square root function.