The height of the car at the end of the ride is 4 meters
(+5) + (-8) = -3
That’s what I got.
The value of 'x' is 24.2 and the value of 'y' is 46.5.
To solve this, we do the following steps.
<u>Step 1:</u> Divide 'y' into 2 parts, 'a' and 'b'. 'a' would be the lower leg of the 45°-45°-90° triangle, while 'b' is the lower leg of the 30°-60°-90° triangle.<em>
</em><u>Step 2:</u> Given the hypotenuse (34) of the 30°-60°-90° triangle, solve for 'b' using the cosine of 30°.
cos30° = b/34 [adjacent over hypotenuse]
b = 34cos30° [cross-multiply]
b = 29.4
<u>Step 3:</u> Solve for the 90° leg (the side opposite the 30° angle) using the Pythagorean Theorem. We will name this leg "h" (cuz height).
l² + l² = hyp²
29.4² + h² = 34²
h² = 1156 - 864.36
√h² = √291.64
h = 17.1
<u>Step 4:</u> Solve for 'x' by using the 45°-45°-90° triangle ratio (1:1:√2). √2 would be the hypotenuse of the 45°-45°-90° triangle, while 1 would be both congruent legs.
Side 'h' is one of the legs; side 'a' is the other. Since these legs are congruent, 'a' also measures 17.1. Now all we need to do is solve for 'x', which is our hypotenuse. To do this, we simply multiply the measure of side 'h' or 'a' by √2.
x = 17.1 × √2
x = 24.2
<u>Step 5:</u> Now that we got the value of 'x', solve for 'y' by adding the measures of sides 'a' and 'b' together.<em>
</em><u /> y = a + b
y = 17.1 + 29.4
y = 46.5
And there you have it! <em>Hope this helps.</em>
<em>
</em>
The solution of the given expression will be 121. The correct answer is option A.
The complete question is given below:-
Simplify the following expression. 11^6/11^4
A. 121 B. 1331 C. 11 D. 22
<h3>What is an expression?</h3>
Expression in maths is defined as the collection of the numbers variables and functions by using signs like addition, subtraction, multiplication and division.
The solution of the given expression will be given as follows:-


Therefore the solution of the given expression will be 121. The correct answer is option A.
To know more about expression follow
brainly.com/question/723406
#SPJ1
Calculate the function values for x = 2

Look at the picture.
Answer:
