Answer and Step-by-step explanation:
This is a complete question
Trials in an experiment with a polygraph include 97 results that include 23 cases of wrong results and 74 cases of correct results. Use a 0.01 significance level to test the claim that such polygraph results are correct less than 80% of the time. Identify the nullhypothesis, alternative hypothesis, test statistic, P-value, conclusion about the null hypothesis, and final conclusion that addresses the original claim. Use the P-value method. Use the normal distribution as an approximation of the binomial distribution.
The computation is shown below:
The null and alternative hypothesis is



= 0.7629
Now Test statistic = z
![= \hat p - P0 / [\sqrtP0 \times (1 - P0 ) / n]](https://tex.z-dn.net/?f=%3D%20%5Chat%20p%20-%20P0%20%2F%20%5B%5CsqrtP0%20%5Ctimes%20%281%20-%20P0%20%29%20%2F%20n%5D)
![= 0.7629 - 0.80 / [\sqrt(0.80 \times 0.20) / 97]](https://tex.z-dn.net/?f=%3D%200.7629%20-%200.80%20%2F%20%5B%5Csqrt%280.80%20%5Ctimes%200.20%29%20%2F%2097%5D)
= -0.91
Now
P-value = 0.1804


So, it is Fail to reject the null hypothesis.
There is ample evidence to demonstrate that less than 80 percent of the time reports that these polygraph findings are accurate.
Answer:
C is the correct answe i need brainliest
Answer:
Step-by-step explanation:35x
Answer:
I don't know the value of either, could you add more information?
Step-by-step explanation:
I'd be glad to help.
So first create and define your variables:
Z = amount of zebra fish
N = amount of neon tetras
Now create your equations:
2z+2.15n=31.20
z+n=15
This is your system. There are multiple methods to use but in this problem I’ll use the substitution method by simplifying the bottom equation.
2z+2.15n=31.20
z=15-n
Now I’ll plug the bottom equation into the top one.
2(15-n)+2.15n=31.20
And just solve from here.
30-2n+2.15n=31.20
0.15n=1.20
n=8
So he bout 8 neon tetras, and 15-8= 7, so he bought 7 zebra fish