To solve this, you have to know that the first derivative of a function is its slope. When an interval is increasing, it has a positive slope. Thus, we are trying to solve for when the first derivative of a function is positive/negative.
f(x)=2x^3+6x^2-18x+2
f'(x)=6x^2+12x-18
f'(x)=6(x^2+2x-3)
f'(x)=6(x+3)(x-1)
So the zeroes of f'(x) are at x=1, x=-3
Because there is no multiplicity, when the function passes a zero, he y value is changing signs.
Since f'(0)=-18, intervals -3<x<1 is decreasing(because -3<0<1)
Thus, every other portion of the graph is increasing.
Therefore, you get:
Increasing: (negative infinite, -3), (1, infinite)
Decreasing:(-3,1)
Answer: Ferenc
Step-by-step explanation:
512 / 5.28 = 0.97 goals for every match
247 / 3.43 = 0.72 goals for every match
Answer:
Use Desmos.com/calculator
Step-by-step explanation:
Remember, y=mx+b
y is equal to any given y point
x is equal to any given x point
m is equal to slope
b is equal to the y-intercept, or where x = 0 and the line crosses the horizon line.
In order to graph the line correctly, you have to isolate y.
y+x=-3
y=-x-3 would be equal to y=mx+b format
slope is negative 1
y intercept is negative 3
start on the y line, go to (0,-3) and start your line.
slope is negative 1, so you go down one and right one.
Answer:
-54
Step-by-step explanation: