17/4 because you have to do 4x4 +1 which equal 17 then make that an improper fraction.
Answer:
0
Step-by-step explanation:
Simplifying
-7(x + -2) + 1 = 15 + -7x
Reorder the terms:
-7(-2 + x) + 1 = 15 + -7x
(-2 * -7 + x * -7) + 1 = 15 + -7x
(14 + -7x) + 1 = 15 + -7x
Reorder the terms:
14 + 1 + -7x = 15 + -7x
Combine like terms: 14 + 1 = 15
15 + -7x = 15 + -7x
Add '-15' to each side of the equation.
15 + -15 + -7x = 15 + -15 + -7x
Combine like terms: 15 + -15 = 0
0 + -7x = 15 + -15 + -7x
-7x = 15 + -15 + -7x
Combine like terms: 15 + -15 = 0
-7x = 0 + -7x
-7x = -7x
Add '7x' to each side of the equation.
-7x + 7x = -7x + 7x
Combine like terms: -7x + 7x = 0
0 = -7x + 7x
Combine like terms: -7x + 7x = 0
0 = 0
Solving
0 = 0
Couldn't find a variable to solve for.
This equation is an identity, all real numbers are solutions.
In this case, h(x) = sqrt(x) + 3
A. f(x)=x+3; g(x)=√x
B. f(x)=x; g(x)=x+3
C. f(x)=√x; g(x)=x+3
D. f(x)=3x; g(x)=√x
Again, you need to find a function f(x) that once evaluated in g(x) gives us h(x)
h(x) = g(f(x))
Looking at the options, the answer is C.
g(f(x)) = f(x) + 3 = sqrt (x) + 3 = h(x)
Hi there!

We are given:
cos(7x)cos(4x) = -1 - sin(7x)sin(4x)
Begin by moving all terms with variables to one side:
cos(7x)cos(4x) + sin(7x)sin(4x) = -1
The corresponding trig identity is cos(A - B). Thus:
cos(7x - 4x) = cos(7x)cos(4x) + sin(7x)sin(4x) = -1
cos(3x) = -1
cos = -1 at π, so:
3x = π
x = π/3
We can also find another solution. Let 3π = -1:
3x = 3π
x = π
Thus, solutions on [0, 2π) are π/3 and π.