Answer:
Cofilin binds to older actin filaments
Explanation:
Microfilaments (also called actin filaments) are a class of protein filament common to all eukaryotic cells, which consist of two strands of subunits of the protein actin. Microfilaments form part of the cell's cytoskeleton and interact with the protein myosin in order to allow the movement of the cell. Within the cell, actin may show two different forms: monomeric G-actin and polymeric F-actin filaments. Microfilaments provide shape to the cell because these filaments can depolymerize (disassemble) and polymerize (assembly) quickly, thereby allowing the cell to change its shape. During the polymerization process, the ATP that is bound to G-actin is hydrolyzed to ADP, which is bound to F-actin. ATP-actin subunits are present at the barbed ends of the filaments, and cleavage of the ATP molecules produces highly stable filaments bound to ADP. In consequence, it is expected that cofilin binds preferentially to highly stable (older) filaments ADP-actin filaments instead of ATP-actin filaments.
Answer:
Secondary roots are thin and spread outward.
Explanation:
Answer:
Science has a central role in shaping what count as environmental problems. This has been evident most recently in the success of planetary science and environmental activism in stimulating awareness and discussion of global environmental problems. We advance three propositions about the special relationship between environmental science and politics: (1) in the formulation of science, not just in its application, certain courses of action are facilitated over others; (2) in global environmental discourse, moral and technocratic views of social action have been privileged; and (3) global environmental change, as science and movement ideology, is vulnerable to deconstructive pressures. These stem from different nations and differentiated social groups within nations having different interests in causing and alleviating environmental problems. We develop these propositions through a reconstruction of The Limits to Growth study of the early 1970s, make extensions to current studies of the human/social impacts of climate change, and review current sources of opposition to global and political formulations of environmental issues.
Answer:
The positive charge of the histone proteins get reduced due to the process of histone acetylation, thus making the wrapping of DNA around the histones less tightened. The loose connected DNA afterward associates with the transcription factors for the articulation of the genes situated in that area.
Generally, when there is no requirement of gene anymore, the acetyl groups from the histones get withdrawn by the activity of histone deacetylase enzyme (HDAC9) that makes the DNA tightly wrapped and inaccessible again. In case, when less expression of histone deacetylase enzyme occurs, the process of deacetylation fails to take place. This indicates that within an immune cell, at the time of infection, the inflammatory gene, which was made available does not get re-wrapped firmly around the histones.