Answer:
0.57142
Step-by-step explanation:
A normal random variable with mean and standard deviation both equal to 10 degrees Celsius. What is the probability that the temperature at a randomly chosen time will be less than or equal to 59 degrees Fahrenheit?
We are told that the Mean and Standard deviation = 10°C
We convert to Fahrenheit
(10°C × 9/5) + 32 = 50°F
Hence, we solve using z score formula
z = (x-μ)/σ, where
x is the raw score = 59 °F
μ is the population mean = 50 °F
σ is the population standard deviation = 50 °F
z = 59 - 50/50
z = 0.18
Probability value from Z-Table:
P(x ≤59) = 0.57142
The probability that the temperature at a randomly chosen time will be less than or equal to 59 degrees Fahrenheit
is 0.57142
ABB G Ppppwhbbbsbbsbsbsbsjsjkskenennsn
Answer: x=4
Step-by-step explanation: Add 3 to both sides, Divide both sides by 22
Answer:

Step-by-step explanation:
Each vertical asymptote corresponds to a zero in the denominator. When the function does not change sign from one side of the asymptote to the other, the factor has even degree. The vertical asymptote at x=-4 corresponds to a denominator factor of (x+4). The one at x=2 corresponds to a denominator factor of (x-2)², because the function does not change sign there.
__
Each zero corresponds to a numerator factor that is zero at that point. Again, if the sign doesn't change either side of that zero, then the factor has even multiplicity. The zero at x=1 corresponds to a numerator factor of (x-1)².
__
Each "hole" in the function corresponds to numerator and denominator factors that are equal and both zero at that point. The hole at x=-3 corresponds to numerator and denominator factors of (x-3).
__
Taken altogether, these factors give us the function ...

It would be 5x?=60 because to find "?" you would need to divide 60 and 5. Since Hector earned 5 times what he did last week it would be modeled by 5 times "?"