1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Phantasy [73]
3 years ago
9

5x 179∘=7x 157∘ what is x?

Mathematics
1 answer:
Nana76 [90]3 years ago
4 0
I got X=11

Minus 7x on both sides
The equation the becomes :
-2x +179=157
Subtract 179 from both sides
Equation now is:
-2x= -22
Divide -2 on both sides
X= 11
You might be interested in
Prove the following integration formula:
7nadin3 [17]

Answer:

See Explanation.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Distributive Property
  • Equality Properties

<u>Algebra I</u>

  • Combining Like Terms
  • Factoring

<u>Calculus</u>

  • Derivative 1:                  \frac{d}{dx} [e^u]=u'e^u
  • Integration Constant C
  • Integral 1:                      \int {e^x} \, dx = e^x + C
  • Integral 2:                     \int {sin(x)} \, dx = -cos(x) + C
  • Integral 3:                     \int {cos(x)} \, dx = sin(x) + C
  • Integral Rule 1:             \int {cf(x)} \, dx = c \int {f(x)} \, dx
  • Integration by Parts:    \int {u} \, dv = uv - \int {v} \, du
  • [IBP] LIPET: Logs, Inverses, Polynomials, Exponents, Trig

Step-by-step Explanation:

<u>Step 1: Define Integral</u>

\int {e^{au}sin(bu)} \, du

<u>Step 2: Identify Variables Pt. 1</u>

<em>Using LIPET, we determine the variables for IBP.</em>

<em>Use Int Rules 2 + 3.</em>

u = e^{au}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = sin(bu)du\\du = ae^{au}du \ \ \ \ \ \ \ \ \ v = \frac{-cos(bu)}{b}

<u>Step 3: Integrate Pt. 1</u>

  1. Integrate [IBP]:                                           \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} - \int ({ae^{au} \cdot \frac{-cos(bu)}{b} }) \, du
  2. Integrate [Int Rule 1]:                                                \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} \int ({e^{au}cos(bu)}) \, du

<u>Step 4: Identify Variables Pt. 2</u>

<em>Using LIPET, we determine the variables for the 2nd IBP.</em>

<em>Use Int Rules 2 + 3.</em>

u = e^{au}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = cos(bu)du\\du = ae^{au}du \ \ \ \ \ \ \ \ \ v = \frac{sin(bu)}{b}

<u>Step 5: Integrate Pt. 2</u>

  1. Integrate [IBP]:                                                  \int {e^{au}cos(bu)} \, du = \frac{e^{au}sin(bu)}{b} - \int ({ae^{au} \cdot \frac{sin(bu)}{b} }) \, du
  2. Integrate [Int Rule 1]:                                    \int {e^{au}cos(bu)} \, du = \frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du

<u>Step 6: Integrate Pt. 3</u>

  1. Integrate [Alg - Back substitute]:     \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} [\frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du]
  2. [Integral - Alg] Distribute Brackets:          \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2} - \frac{a^2}{b^2} \int ({e^{au} sin(bu)}) \, du
  3. [Integral - Alg] Isolate Original Terms:     \int {e^{au}sin(bu)} \, du + \frac{a^2}{b^2} \int ({e^{au} sin(bu)}) \, du= \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}
  4. [Integral - Alg] Rewrite:                                (\frac{a^2}{b^2} +1)\int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}
  5. [Integral - Alg] Isolate Original:                                    \int {e^{au}sin(bu)} \, du = \frac{\frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}}{\frac{a^2}{b^2} +1}
  6. [Integral - Alg] Rewrite Fraction:                          \int {e^{au}sin(bu)} \, du = \frac{\frac{-be^{au}cos(bu)}{b^2} + \frac{ae^{au}sin(bu)}{b^2}}{\frac{a^2}{b^2} +\frac{b^2}{b^2} }
  7. [Integral - Alg] Combine Like Terms:                          \int {e^{au}sin(bu)} \, du = \frac{\frac{ae^{au}sin(bu)-be^{au}cos(bu)}{b^2} }{\frac{a^2+b^2}{b^2} }
  8. [Integral - Alg] Divide:                                  \int {e^{au}sin(bu)} \, du = \frac{ae^{au}sin(bu) - be^{au}cos(bu)}{b^2} \cdot \frac{b^2}{a^2 + b^2}
  9. [Integral - Alg] Multiply:                               \int {e^{au}sin(bu)} \, du = \frac{1}{a^2+b^2} [ae^{au}sin(bu) - be^{au}cos(bu)]
  10. [Integral - Alg] Factor:                                 \int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)]
  11. [Integral] Integration Constant:                     \int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)] + C

And we have proved the integration formula!

6 0
3 years ago
Read 2 more answers
The sides of a square are 2^4/9 inches long. what is the area of the square?
andrey2020 [161]
The area of a square is the length of a side times itself:
2_4/9 * 2_4/9
Mixed numbers cannot be multiplied, so first convert to improper fractions:
(9*2)+4 = 18+4 = 22/9
22/9 * 22/9
Multiply straight across:
(22*22)/(9*9) = 484/81
Now turn this into a mixed number:
81 goes into 484 five times with 79 left over:
5_79/81 square inches
Since this is not one of the answer choices, I'm wondering if the given length of the side of the square is incorrect?
5 0
3 years ago
2. A parking lot holds 40 cars. There are 20 cars in the lot already. Which inequality can be solved to show all the
Pie
C I need to put 20 letters so yea the answer is C
7 0
3 years ago
Please help me answer this!!!!​
garik1379 [7]
<h3><u>Answer</u><u>:</u></h3>

7 \frac{1}{2}

<h3><u>Explan</u><u>ation</u><u>:</u></h3>

First, convert any mixed numbers to fractions. An easy way to convert:

4 \frac{1}{2}  = 4 \times 2 + 1

<h3>=</h3>

\frac{9}{2}  \div  \frac{3}{5}

Then, apply the fractions formula for division.

\frac{9 \times5 }{2 \times 3}  =  \frac{45}{6}

Then, simplify.

\frac{45}{6}   = 7 \frac{1}{2}

5 0
3 years ago
If a^2 and b are directly proportional, and a=2 when b=9, then what is b when a=6?
Alisiya [41]

Answer:

b = 81

Step-by-step explanation:

given a² and b are directly proportional then the equation relating them is

a² = kb ← k is the constant of proportionality

to find k use the condition a = 2 when b = 9 , then

2² = 9k

4 = 9k ( divide both sides by 9 )

\frac{4}{9} = k

a² = \frac{4}{9} b ← equation of proportion

when a = 6 , then

6² = \frac{4}{9} b

36 = \frac{4}{9} b ( multiply both sides by 9 to clear the fraction )

324 = 4b ( divide both sides by 4 )

81 = b

8 0
2 years ago
Other questions:
  • What is the answer to -12/-9 is equal to what
    9·2 answers
  • Please help and thank you
    8·1 answer
  • The product is 63. the sum of the factors is 16. their differences is 2. what are the factors?
    8·2 answers
  • Cassie wants to use green and yellow fabric to make some curtains. She has 28.85 yards of yellow fabric and 34.25 yards of green
    9·2 answers
  • If alpha and beta are the complex cube roots of unity then alpha power 4 + beta power 4 + 1/ alpha.bata?
    5·1 answer
  • Help please,<br>solve for x​
    14·2 answers
  • 4(sin⁴ 60° + cos⁴ 60°) = 1 + 3(sin²60° - Cos² 60°)​
    15·1 answer
  • Help asaaaap explain please!!!!!
    11·1 answer
  • Explain how you know when you can factor to solve quadratics as opposed to using the square root method
    10·1 answer
  • Solve the system of equations 4x – 5y = –6 and -6x + 7y = 12 by<br> combining the equations.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!