1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jeka57 [31]
4 years ago
8

Y less than x minus 3

Mathematics
1 answer:
MariettaO [177]4 years ago
6 0
I assume you want the expression to this so it would be x-y-3
You might be interested in
Help!! It should be easy it’s 7th grade math
Katen [24]

Answer:

The watermelon candies taste $0.13 more.

Step-by-step explanation:

First, in order to find out how much each candy costs per ounce, you have to take the cost and divide it by the number of ounces. 3.48 divided by 12 is 0.29, so the watermelon candies cost $0.29 per ounce. 1.38 divided by 8 is 0.16, so the chewy chocolates cost $0.16 per ounce. In order to find how much more the watermelon candies cost, we have to subtract the cost of the watermelon candies by the cost of the chocolate candies. 0.29-0.16=0.13, so the watermelon candies cost $0.13 more than the chocolate candies.

7 0
3 years ago
If 30 kids have birds and its the 5% how many kids were in total
GuDViN [60]
Okay my last answer of the day :-)

(30/5)×100= 600 kids.
7 0
3 years ago
Read 2 more answers
The width of a rectangle is 1m less than half of its length, and the perimeter is 46m. Find the dimensions.
VLD [36.1K]
The width is 15.
The length is 31.
6 0
4 years ago
Find the value of 7w-8 given that -4w-5=3<br> Simplify your answer as much as possible.<br> 7w - 8 =
blondinia [14]

Answer:

The value of 7w - 8 is -22

Step-by-step explanation:

Let us solve the question

∵ -4w - 5 = 3

→ Move -5 from the left side to the right side by adding both sides by 5

∴ -4w - 5 + 5 = 3 + 5

∴ -4w = 8

→ Divide both sides by -4

∵ \frac{-4w}{-4} = \frac{8}{-4}

∴ w = -2

→ Now let us find the value of the given expression

∵ The given expression is 7w - 8

→ Substitute w by -2 to gets its value

∴ 7w - 8 = 7(-2) - 8

∴ 7w - 8 = -14 - 8

∴ 7w - 8 = -22

∴ The value of 7w - 8 is -22

8 0
3 years ago
Find the area of the region enclosed by the graphs of these equations. (CALCULUS HELP)
sergiy2304 [10]

Answer:

\displaystyle A = \frac{20\sqrt{15}}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  1. Multiplication Property of Equality
  2. Division Property of Equality
  3. Addition Property of Equality
  4. Subtraction Property of Equality

<u>Algebra I</u>

  • Terms/Coefficients
  • Graphing
  • Exponential Rule [Root Rewrite]:                                                                   \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Area - Integrals

U-Substitution

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

F: y = √(15 - x)

G: y = √(15 - 3x)

H: y = 0

<u>Step 2: Find Bounds of Integration</u>

<em>Solve each equation for the x-value for our bounds of integration.</em>

F

  1. Set <em>y</em> = 0:                                                                                                         0 = √(15 - x)
  2. [Equality Property] Square both sides:                                                          0 = 15 - x
  3. [Subtraction Property of Equality] Isolate <em>x</em> term:                                         -x = -15
  4. [Division Property of Equality] Isolate <em>x</em>:                                                        x = 15

G

  1. Set y = 0:                                                                                                         0 = √(15 - 3x)
  2. [Equality Property] Square both sides:                                                          0 = 15 - 3x
  3. [Subtraction Property of Equality] Isolate <em>x</em> term:                                         -3x = -15
  4. [Division Property of Equality] Isolate <em>x</em>:                                                        x = 5

This tells us that our bounds of integration for function F is from 0 to 15 and our bounds of integration for function G is 0 to 5.

We see that we need to subtract function G from function F to get our area of the region (See attachment graph for visual).

<u>Step 3: Find Area of Region</u>

<em>Integration Part 1</em>

  1. Rewrite Area of Region Formula [Integration Property - Subtraction]:     \displaystyle A = \int\limits^b_a {f(x)} \, dx - \int\limits^d_c {g(x)} \, dx
  2. [Integral] Substitute in variables and limits [Area of Region Formula]:     \displaystyle A = \int\limits^{15}_0 {\sqrt{15 - x}} \, dx - \int\limits^5_0 {\sqrt{15 - 3x}} \, dx
  3. [Area] [Integral] Rewrite [Exponential Rule - Root Rewrite]:                       \displaystyle A = \int\limits^{15}_0 {(15 - x)^{\frac{1}{2}}} \, dx - \int\limits^5_0 {(15 - 3x)^{\frac{1}{2}}} \, dx

<u>Step 4: Identify Variables</u>

<em>Set variables for u-substitution for both integrals.</em>

Integral 1:

u = 15 - x

du = -dx

Integral 2:

z = 15 - 3x

dz = -3dx

<u>Step 5: Find Area of Region</u>

<em>Integration Part 2</em>

  1. [Area] Rewrite [Integration Property - Multiplied Constant]:                       \displaystyle A = -\int\limits^{15}_0 {-(15 - x)^{\frac{1}{2}}} \, dx + \frac{1}{3}\int\limits^5_0 {-3(15 - 3x)^{\frac{1}{2}}} \, dx
  2. [Area] U-Substitution:                                                                                   \displaystyle A = -\int\limits^0_{15} {u^{\frac{1}{2}}} \, du + \frac{1}{3}\int\limits^0_{15} {z^{\frac{1}{2}}} \, dz
  3. [Area] Reverse Power Rule:                                                                         \displaystyle A = -(\frac{2u^{\frac{3}{2}}}{3}) \bigg|\limit^0_{15} + \frac{1}{3}(\frac{2z^{\frac{3}{2}}}{3}) \bigg|\limit^0_{15}
  4. [Area] Evaluate [Integration Rule - FTC 1]:                                                   \displaystyle A = -(-10\sqrt{15}) + \frac{1}{3}(-10\sqrt{15})
  5. [Area] Multiply:                                                                                               \displaystyle A = 10\sqrt{15} + \frac{-10\sqrt{15}}{3}
  6. [Area] Add:                                                                                                     \displaystyle A = \frac{20\sqrt{15}}{3}

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Area Under the Curve - Area of a Region (Integration)

Book: College Calculus 10e

3 0
3 years ago
Other questions:
  • PLEASE HELP!
    7·1 answer
  • Nicole is playing a video game where each round lasts 3/44 of an hour. She has scheduled 3 3/4 hours to play the game. How many
    5·1 answer
  • Solve for x: -3x -3= -3(x+1) A All real numbers B No Solution C 6 D -6
    6·1 answer
  • (0.4h^5)^3<br> Simplify<br> help me please !
    8·1 answer
  • I do not know how to do a math equation
    15·1 answer
  • Explain one of the theorems that you would use to find the zero of higher degree polynomial
    6·1 answer
  • What is 20 1/4 % of 3?
    9·1 answer
  • Solve each system using substitution. Check your answer. y=8-x <br> 7=2-y
    7·1 answer
  • Correct answer gets brainliest and 5 stars
    10·2 answers
  • El perímetro de un rectángulo es de 72 cm. Halla el área del rectángulo si su largo es el 25% más grande que su ancho
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!