<h2><u>Part A:</u></h2>
Let's denote no of seats in first row with r1 , second row with r2.....and so on.
r1=5
Since next row will have 10 additional row each time when we move to next row,
So,
r2=5+10=15
r3=15+10=25
<u>Using the terms r1,r2 and r3 , we can find explicit formula</u>
r1=5=5+0=5+0×10=5+(1-1)×10
r2=15=5+10=5+(2-1)×10
r3=25=5+20=5+(3-1)×10
<u>So for nth row,</u>
rn=5+(n-1)×10
Since 5=r1 and 10=common difference (d)
rn=r1+(n-1)d
Since 'a' is a convention term for 1st term,
<h3>
<u>⇒</u><u>rn=a+(n-1)d</u></h3>
which is an explicit formula to find no of seats in any given row.
<h2><u>Part B:</u></h2>
Using above explicit formula, we can calculate no of seats in 7th row,
r7=5+(7-1)×10
r7=5+(7-1)×10 =5+6×10
r7=5+(7-1)×10 =5+6×10 =65
which is the no of seats in 7th row.
Answer:
m<1 = 26°
m<2 = 154°
m<3 = 26°
m<4 = 26°
m<5 = 154°
m<6 = 154°
m<7 = 26°
Step-by-step explanation:
What is required was not stated, however, let's find the value of every angle labelled in this diagram.
✔️m<1 = 180° - 154° (linear pair theorem)
m<1 = 26°
✔️m<2 = 154° (vertical angles theorem)
m<2 = 154°
✔️m<3 = m<1 (vertical angles theorem)
m<3 = 26° (substitution)
✔️m<4 = m<3 (alternate interior angles theorem)
m<4 = 26° (substitution)
✔️m<5 = m<2 (alternate interior angles theorem)
m<5 = 154° (substitution)
✔️m<6 = m<5 (vertical angles theorem)
m<6 = 154° (substitution)
✔️m<7 = m<4 (vertical angles theorem)
m<7 = 26° (substitution)
= (a-5).(a+3)
= a²+3a-5a-15
= a²-2a-15
Answer:
x-axis
Step-by-step explanation:
The horizontal number line is called the x-axis. The vertical number line is called the y-axis. The point where the x- and y-axes meet is the origin.
Hope this helps! <3