<u>Question 4</u>
1) bisects , , and (given)
2) (an angle bisector splits an angle into two congruent parts)
3) and are right angles (perpendicular lines form right angles)
4) and are right triangles (a triangle with a right angle is a right triangle)
5) (reflexive property)
6) (HA)
<u>Question 5</u>
1) and are right angles, , is the midpoint of (given)
2) and are right triangles (a triangle with a right angle is a right triangle)
3) (a midpoint splits a segment into two congruent parts)
4) (HA)
5) (CPCTC)
<u>Question 6</u>
1) and are right angles, bisects (given)
2) (reflexive property)
3) (an angle bisector splits an angle into two congruent parts)
5) (HA)
6) (CPCTC)
7) bisects (if a segment splits an angle into two congruent parts, it is an angle bisector)
<u>Question 7</u>
1) and are right angles, (given)
2) and are right triangles (definition of a right triangle)
3) (vertical angles are congruent)
4) (transitive property of congruence)
6) (HA theorem)
7) (CPCTC)
8) bisects (definition of bisector of an angle)
Answer:
Step-by-step explanation:
Some transformations for a function f(x) are shown below:
If , the function is translated up "k" units.
If , the function is translated down "k" units.
If , the function is reflected across the x-axis.
If , the function is reflected across the y-axis.
Therefore, knowing those transformations and given the exponential parent function:
If it is reflected across the y-axis and the it is translated down 4 units, we can determine that the resulting function is: