Division property of equality
Answer: a²+b² = -99/2
Step-by-step explanation:
Since we are given two equations, this equations will be solved simultaneously to get a² and b²
a³ - 3ab² = 47 ... 1
b³ - 3a² b = 52... 2
From 1, a(a² - 3b²) = 47...3
From 2, b(b² - 3a²) = 52... 4
Adding 3 and 4, we have;
a²+b²-3b²-3a² = 99 (note that a and b will no longer be part of the equations as they have been factored out)
a²+b²-(3b²+3a²) = 99
(a²+b²) -3(b²+a²)= 99
Taking the difference we have
- 2(a²+b²) = 99
a²+b² = -99/2
It's a simultaneous equation:
Steps:
1.Number the equations..
a+b=77 -1
a-b=13 -2
2. Choose what variable you want to use. In this case I would use the "b". Since the signs in front of the "b's" are different, add the two equations together
a + b = 77
+ + +
a (-b) = 13
Which gives;
2a = 90
Then solve to find a:
2a=90
a= 90/2
a=45
3.Then plug the "a" value into any of the original equations to find the "b" value. I would use equation 1 since the all the variables are positive.
a + b = 77
(45) + b = 77
b=77-45
b=32
4.Solution
a=45
b=32