Answer:
The chances of landing on red are 1 in 4, or one fourth. This problem asked us to find some probabilities involving a spinner
<h2>
<em><u>I </u></em><em><u>hope</u></em><em><u> it</u></em><em><u> helps</u></em><em><u> you</u></em><em><u> </u></em><em><u> </u></em><em><u>please</u></em><em><u> mark</u></em><em><u> me</u></em><em><u> as</u></em><em><u> brainlist</u></em><em><u> </u></em></h2>
Angie will now have 100 stuffed animals
If a is the number of events, then a = 1. Plugging in 1 for a in the equation

, you get

.
Total cost is $9.
<h3>
Answer: B) Only the first equation is an identity</h3>
========================
I'm using x in place of theta. For each equation, I'm only altering the left hand side.
Part 1
cos(270+x) = sin(x)
cos(270)cos(x) - sin(270)sin(x) = sin(x)
0*cos(x) - (-1)*sin(x) = sin(x)
0 + sin(x) = sin(x)
sin(x) = sin(x) ... equation is true
Identity is confirmed
---------------------------------
Part 2
sin(270+x) = -sin(x)
sin(270)cos(x) + cos(270)sin(x) = -sin(x)
-1*cos(x) + 0*sin(x) = -sin(x)
-cos(x) = -sin(x)
We don't have an identity. If the right hand side was -cos(x), instead of -sin(x), then we would have an identity.
Sin(35) = Opp./Hypo
sin(35) = 18/x
so
x = 18/sin(35)
x = 18 / 0.57357644
x = 31.38
x = 31.4
Answer is C. 31.4