Answer:
The hypotenuse to the nearest tenth is 8.1
Step-by-step explanation:
We can use the Pythagorean theorem to solve
a^2 + b^2 = c^2 where a and b are the legs and c is the hypotenuse
Let a be the x leg and b be the y leg
a = 7 units
b= 4 units
7^2 + 4^2 = c^2
49+ 16 = c^2
65 = c^2
Take the square root of each side
sqrt(65) = sqrt(c^2)
8.062257748 =c
To the nearest tenth
8.1 =c
Answer:
3, in both a), b)
Step-by-step explanation:
a) The slope of the line tangent to the curve that passes through the point (2,-10) is equal to the derivative of p at x=2.
Using differentiation rules (power rule and sum rule), the derivative of p(x) for any x is
. In particular, the value we are looking for is
.
If you would like to compute the equation of the tangent line, we can use the point-slope equation to get 
b) The instantaneus rate of change is also equal to the derivative of P at the point x=2, that is, P'(2). This is equal to
.
Answer:
(-1,-4)
Step-by-step explanation:
(2, -1)
Moving down 3 means subtract 3 from the y value
Left 3 means subtract 3 from the x value
(2-3, -1-3)
(-1,-4)