Dry, white powder, soluble in water to form a slightly basic solution
Answer:
0.7561 g.
Explanation:
- The hydrogen than can be prepared from Al according to the balanced equation:
<em>2Al + 6HCl → 2AlCl₃ + 3H₂,</em>
It is clear that 2.0 moles of Al react with 6.0 mole of HCl to produce 2.0 moles of AlCl₃ and 3.0 mole of H₂.
- Firstly, we need to calculate the no. of moles of (6.8 g) of Al:
no. of moles of Al = mass/atomic mass = (6.8 g)/(26.98 g/mol) = 0.252 mol.
<em>Using cross multiplication:</em>
2.0 mol of Al produce → 3.0 mol of H₂, from stichiometry.
0.252 mol of Al need to react → ??? mol of H₂.
∴ the no. of moles of H₂ that can be prepared from 6.80 g of aluminum = (3.0 mol)(0.252 mol)/(2.0 mol) = 0.3781 mol.
- Now, we can get the mass of H₂ that can be prepared from 6.80 g of aluminum:
mass of H₂ = (no. of moles)(molar mass) = (0.3781 mol)(2.0 g/mol) = 0.7561 g.
Answer:
0.24 s-1
Explanation:
We first list the parameters as shown in the image attached. The variables are now properly substituted. This equation is used to calculate the rate constant and clearly show us the dependence of the rate constant on temperature. From this equation, we can clearly and easily see that the rate constant increases exponentially with increase in temperature of the reaction system.
Answer:
Explanation:
Flame test:
The metals ions can be detected through the flame test. Different ions gives different colors when heated on flame. Tom perform the flame test following steps should follow:
1. Dip a wire loop in the solution of compound which is going to be tested.
2. After dipping put the loop of wire on bunsen burner flame.
3. Observe the color of flame.
4. Record the flame color produce by compound
Color produce by metals:
Red = Lithium, zirconium, strontium, mercury, Rubidium (red violet)
Orange-red = calcium
Yellow = sodium, iron (brownish yellow)
Green = green
Blue = cesium. arsenic, copper, tantalum, indium, lead
Violet = potassium (lilac)