The possible values of x for the following functions are values on real number except 0 and 1
<h3>Domain of a function</h3>
The domain of a function are the values of the independent variable for which it exists.
Given the function below
f(x)=2-x/x(x-1)
The function does not exist at the. point where the denominator is zero. From the function given, the function does not exist when;
x(x -1) = 0
x = 0 and x = 1
Hence the possible values of x for the following functions are values on real number except 0 and 1
Learn more on domain of a function here; brainly.com/question/1770447
#SPJ1
Since you're working with the ASA postulate, you're looking to show congruence of the angles at either end of a side. You're given side AC and angle A as congruent with their counterparts. Obviously, you also need to show congruence of angle C with its counterpart, angle Z.
selection B is appropriate
bearing in mind that the hypotenuse is never negative, since it's just a distance unit, so if an angle has a sine ratio of -(5/13) the negative must be the numerator, namely -5/13.
![\bf cos\left[ sin^{-1}\left( -\cfrac{5}{13} \right) \right] \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{then we can say that}~\hfill }{sin^{-1}\left( -\cfrac{5}{13} \right)\implies \theta }\qquad \qquad \stackrel{\textit{therefore then}~\hfill }{sin(\theta )=\cfrac{\stackrel{opposite}{-5}}{\stackrel{hypotenuse}{13}}}\impliedby \textit{let's find the \underline{adjacent}}](https://tex.z-dn.net/?f=%5Cbf%20cos%5Cleft%5B%20sin%5E%7B-1%7D%5Cleft%28%20-%5Ccfrac%7B5%7D%7B13%7D%20%5Cright%29%20%5Cright%5D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bthen%20we%20can%20say%20that%7D~%5Chfill%20%7D%7Bsin%5E%7B-1%7D%5Cleft%28%20-%5Ccfrac%7B5%7D%7B13%7D%20%5Cright%29%5Cimplies%20%5Ctheta%20%7D%5Cqquad%20%5Cqquad%20%5Cstackrel%7B%5Ctextit%7Btherefore%20then%7D~%5Chfill%20%7D%7Bsin%28%5Ctheta%20%29%3D%5Ccfrac%7B%5Cstackrel%7Bopposite%7D%7B-5%7D%7D%7B%5Cstackrel%7Bhypotenuse%7D%7B13%7D%7D%7D%5Cimpliedby%20%5Ctextit%7Blet%27s%20find%20the%20%5Cunderline%7Badjacent%7D%7D)
![\bf \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies \pm\sqrt{c^2-b^2}=a \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases} \\\\\\ \pm\sqrt{13^2-(-5)^2}=a\implies \pm\sqrt{144}=a\implies \pm 12=a \\\\[-0.35em] ~\dotfill\\\\ cos\left[ sin^{-1}\left( -\cfrac{5}{13} \right) \right]\implies cos(\theta )=\cfrac{\stackrel{adjacent}{\pm 12}}{13}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Busing%20the%20pythagorean%20theorem%7D%20%5C%5C%5C%5C%20c%5E2%3Da%5E2%2Bb%5E2%5Cimplies%20%5Cpm%5Csqrt%7Bc%5E2-b%5E2%7D%3Da%20%5Cqquad%20%5Cbegin%7Bcases%7D%20c%3Dhypotenuse%5C%5C%20a%3Dadjacent%5C%5C%20b%3Dopposite%5C%5C%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20%5Cpm%5Csqrt%7B13%5E2-%28-5%29%5E2%7D%3Da%5Cimplies%20%5Cpm%5Csqrt%7B144%7D%3Da%5Cimplies%20%5Cpm%2012%3Da%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20cos%5Cleft%5B%20sin%5E%7B-1%7D%5Cleft%28%20-%5Ccfrac%7B5%7D%7B13%7D%20%5Cright%29%20%5Cright%5D%5Cimplies%20cos%28%5Ctheta%20%29%3D%5Ccfrac%7B%5Cstackrel%7Badjacent%7D%7B%5Cpm%2012%7D%7D%7B13%7D)
le's bear in mind that the sine is negative on both the III and IV Quadrants, so both angles are feasible for this sine and therefore, for the III Quadrant we'd have a negative cosine, and for the IV Quadrant we'd have a positive cosine.
The best way to do this is to first change each of the measurements into feet and then calculate the area:
2.44m = 8.01ft
1.83m = 6.00ft
When multiplied together (to give the area) we get:
8.01*6.00 = 48.1ft²