The right answer is metaphase II.
The process is performed in two nuclear and cytoplasmic divisions, called first and second meiotic division or simply meiosis I and meiosis II. Both include prophase, metaphase, anaphase, and telophase. First division prophase is long and consists of 5 stages: leptotene, zygotene, pachytene, diplotene, and diakinesis. It is at this point that genetic recombination takes place at the level of chiasmus.
During meiosis I, the members of each homologous pair of chromosomes are paired during prophase, forming bivalents. During this phase, a protein structure, called synaptonemal complex form, allows recombination between homologous chromosomes. Subsequently, a large condensation of the bivalent chromosomes occurs and go to the metaphase plate during the first metaphase, resulting in the migration of n chromosomes to each of the poles during the first anaphase. This reduction division is responsible for maintaining the number of chromosomes characteristic of each species.
In meiosis II, as in mitosis, the sister chromatids comprising each chromosome are separated and distributed between the nuclei of the daughter cells. Between these two successive steps, there is no DNA replication. The maturation of the daughter cells will result in the gametes.
Answer:
multicellular.
Explanation:
Organisms exhibit various levels of organization of the body. It includes cellular level, tissue level, organ level, organ system level of organization. The unicellular organisms have single cells as their bodies and therefore do not have the genes that regulate the various parts of the body rather than the individual cells. Prokaryotic are unicellular organisms only and do not have multiple cells in their bodies. Therefore, the mentioned genes are the regulatory genes that coordinate the functioning of various parts of the body of a multicellular organism. For instance, the genes involved in regulation of blood glucose levels.
Bryophytes never form xylem tissue, the special lignin- containing, water-conducting tissue that is found in the sporophytes of all vascular plants.
There are so many examples for that in different areas, like TPT1 experiment carried out in our lab recently.Here's one link: http://www.alfa-chemistry.com/tpt1-cas-167218-46-4-item-290583.htm
So if it's 20% adenine (A) then it's 20% (T)...because A always pairs with T. That adds up to 40%....60% therefore is G+C...so you'd have 30% Cytosine (C) and 30% Guanine (G).