<span>One astronomical unit is equal
to the average distance between the Earth and the Sun. The answer is letter B. However,
the distance between the earth and the sun varies as the earth revolves around
the sun. but recent discoveries have proven the exact distance. It is also
equal to 149, 597, 870, 700 meters and was defined by the International
Astronomical Union. </span>
Answer:
vi = 3.95 m/s
Explanation:
We can apply the Work-Energy Theorem as follows:
W = ΔE = Ef - Ei
W = - Ff*d
then
Ef - Ei = - Ff*d <em> </em>
If
Ei = Ki + Ui = 0.5*m*vi² + m*g*hi = 0.5*m*vi² + m*g*hi = m*(0.5*vi² + g*hi)
hi = d*Sin 20º = 5.1 m * Sin 20º = 1.7443 m
Ef = Kf + Uf = 0 + 0 = 0
As we know, vf = 0 ⇒ Kf = 0
Uf = 0 since hf = 0
we get
W = ΔE = Ef - Ei = 0 - m*(0.5*vi² + g*hi) ⇒ W = - m*(0.5*vi² + g*hi) <em> (I)</em>
<em />
If
W = - Ff*d = - μ*N*d = - μ*(m*g*Cos 20º)*d = - μ*m*g*Cos 20º*d <em>(II)</em>
<em />
we can say that
<em />
- m*(0.5*vi² + g*hi) = - μ*m*g*Cos 20º*d
⇒ vi = √(2*g*(μ*Cos 20º*d - hi))
⇒ vi = √(2*(9.81 m/s2)*(0.53*Cos 20º*5.1m - 1.7443 m)) = 3.95 m/s
<em />
A). nuclear
No. There were batteries long long before we learned
how to use nuclear energy. Also, there is no danger of
exposure to radioactivity when you're working with a battery.
b). mechanical
No. A battery has no moving parts.
c). gravitational
No. No matter how high you take a battery in an airplane, or
how far you lower it into a mine-shaft, its characteristics don't
change. In fact, batteries even work on things that are in orbit.
d). chemical
Bingo.
Answer:
True
Explanation:
When the periodic time increases the frequency is lower.
Answer:
Following are the responses to the given question:
Explanation:
Please find the attached table.

