Unlike the previous problem, this one requires application of the Law of Cosines. You want to find angle Q when you know the lengths of all 3 sides of the triangle.
Law of Cosines: a^2 = b^2 + c^2 - 2bc cos A
Applying that here:
40^2 = 32^2 + 64^2 - 2(32)(64)cos Q
Do the math. Solve for cos Q, and then find Q in degrees and Q in radians.
Answer:
y = 1/2 x + 3
Step-by-step explanation:
the positive 3 is the y intercept and the positive 1/2 is rise over run up-1 & 2 to the right
4:30 hours ..............
y² = 8y - 15 (alternate angles are equal)
y² - 8y + 15 = 0
(y - 5)(y - 3) = 0
y = 5 or 3
x + 8y - 15 = 180 (angles in a straight line add up to 180)
when y = 5
x + 40 - 15 = 180
x = 155°
when y = 3
x + 24 - 15 = 180
x = 171°
Answer:4x
Step-by-step explanation: