1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lady_Fox [76]
4 years ago
9

8/9=4/5k how to solve

Mathematics
1 answer:
velikii [3]4 years ago
5 0
Divide both sides by 4/5 or multiply by the reciprocal.

Flip 4/5 to get the reciprocal.
The reciprocal of 4/5 is 5/4 so we will multiply both sides by that.

5/4 * 8/9 = 4/5 * 5/4 * k

4/5 and 5/4 cancel out so now you have


5/4 * 8/9 = k

multiply top and bottom
(5 *8 )/(4*9)

40/36

Simplify

10/9
You might be interested in
find the equation of the line that is perpendicular to the given line and passes through the given point. CD; (-2,1). C cornet p
Studentka2010 [4]

Answer:

  x -2y = -4

Step-by-step explanation:

The slope of the line between points C and D is ...

  m = (y2 -y1)/(x2 -x1)

  m = (7 -13)/(5 -2) = -6/3 = -2

The slope of the perpendicular line is the opposite reciprocal of this: -1/(-2) = 1/2. The point-slope equation of the desired line is ...

  y -k = m(x -h) . . . . line with slope m through point (h, k)

  y -1 = 1/2(x -(-2))

We can rearrange this to standard form.

  2y -2 = x +2 . . . . . multiply by 2

  -4 = x -2y . . . . . . . subtract 2y+2

  x -2y = -4 . . . . . . standard form equation of the desired line

5 0
2 years ago
Analyze the diagram below and complete the instructions that follow.
valentinak56 [21]

Answer:

x = 6

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtract Property of Equality

<u>Algebra I</u>

  • Terms/Coefficients/Degrees
  • Expand by FOIL (First Outside Inside Last)
  • Factoring
  • Multiple Roots

<u>Trigonometry</u>

[Right Triangles Only] Pythagorean Theorem: a² + b² = c²

  • a is a leg
  • b is another leg
  • c is the hypotenuse

Step-by-step explanation:

<u>Step 1: Identify</u>

<em>a</em> = x + 3

<em>b</em> = x

<em>c</em> = √117

<u>Step 2: Solve for </u><em><u>x</u></em>

  1. Substitute [PT]:                                                                                                (x + 3)² + x² = (√117)²
  2. Expand [FOIL]:                                                                                                 x² + 6x + 9 + x² = (√117)²
  3. Combine like terms:                                                                                       2x² + 6x + 9 = (√117)²
  4. Exponents:                                                                                                      2x² + 6x + 9 = 117
  5. [SPE] Subtract 117 on both sides:                                                                    2x² + 6x - 108 = 0
  6. Factor out GCF:                                                                                               2(x² + 3x - 54) = 0
  7. [DPE] Divide 2 on both sides:                                                                         x² + 3x - 54 = 0
  8. Factor Quadratic:                                                                                            (x - 6)(x + 9) = 0
  9. Solve roots/solve <em>x</em>:                                                                                         x = -9, 6

Since we are dealing with positive values, we can disregard the negative root.

∴ x = 6

4 0
3 years ago
Determine the shortest segment in △ PQS and △ QRS. Remember that a segment is named by its endpoints (two letters).
irinina [24]

Answer: QS and QR are the shortest segment of the triangle ΔPQS, and ΔSQR respectively.

Step-by-step explanation:

Since we have given that

ΔPQS, and ΔSQR,

Consider, ΔPQS,

As we know that " the length opposite to the largest angle is the shortest segment."

So, According to the above statement.

\angle QPS=63\textdegree\\\\\text{So, QS is the shortest segment of this triangle}

Similarly,

Consider, ΔSQR,

Again applying the above statement, we get that,

\angle QSR=75\textdegree\\\\\text{ So, QR is the shortest segment of this triangle}

Hence, QS and QR are the shortest segment of the triangle ΔPQS, and ΔSQR respectively.



8 0
3 years ago
What is the domain of the given function?
loris [4]
All of the x values
3 0
4 years ago
Read 2 more answers
Help me solve this problem please
Mkey [24]

Answer:

A

Step-by-step explanation:

y=-3x

Because Y=-3x

3 0
3 years ago
Other questions:
  • What is the surface area of the sphere
    13·1 answer
  • I WILL GIVE BRAINLIEST I NEED HELPPPPPPP!!
    10·1 answer
  • What is the effect on the graph of f(x) if it is changed to f(x) + 7 and f(x + 7)?Linear, quadratic and exponential
    6·1 answer
  • Can someone help me find the width and the length
    5·1 answer
  • The school store sells Midville High T-shirts for $12 each and Midville High gym shorts for $9 a pair. One afternoon they sold a
    11·1 answer
  • If f(x) = 4+ 3x, what is f(-9)?
    12·2 answers
  • Pls help! 15 points<br> It’s for math
    8·2 answers
  • Please help guys its due soon 24 points
    14·2 answers
  • Find the Slope:
    11·2 answers
  • How are evidence and counterexamples used in proofs . In a direct proof evidence is used to blank .on the other hand a counterex
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!