Answer: The value of cosine is
and the value of cotangent is -1.
Explanation:
The given point is
.
Since the x coordinate is negative and y coordinate is positive so the point must be lies in second quadrant.
The distance of the point from the origin is,
![r=\sqrt{(\frac{-\sqrt{2}} {2}-0)^2+(\frac{\sqrt{2}} {2}-0)^2}](https://tex.z-dn.net/?f=r%3D%5Csqrt%7B%28%5Cfrac%7B-%5Csqrt%7B2%7D%7D%20%7B2%7D-0%29%5E2%2B%28%5Cfrac%7B%5Csqrt%7B2%7D%7D%20%7B2%7D-0%29%5E2%7D)
![r=\sqrt{ \frac{2}{4}+\frac{2}{4}}](https://tex.z-dn.net/?f=r%3D%5Csqrt%7B%20%5Cfrac%7B2%7D%7B4%7D%2B%5Cfrac%7B2%7D%7B4%7D%7D)
![r=1](https://tex.z-dn.net/?f=r%3D1)
The given point is in the form of (a,b). So we get,
![a=\frac{-\sqrt{2}} {2}](https://tex.z-dn.net/?f=a%3D%5Cfrac%7B-%5Csqrt%7B2%7D%7D%20%7B2%7D)
![b=\frac{\sqrt{2}} {2}](https://tex.z-dn.net/?f=b%3D%5Cfrac%7B%5Csqrt%7B2%7D%7D%20%7B2%7D)
The formula for cosine,
![\cos \theta =\frac{a}{r}](https://tex.z-dn.net/?f=%5Ccos%20%5Ctheta%20%3D%5Cfrac%7Ba%7D%7Br%7D)
![\cos \theta =\frac{\frac{-\sqrt{2}} {2}}{1}}](https://tex.z-dn.net/?f=%5Ccos%20%5Ctheta%20%3D%5Cfrac%7B%5Cfrac%7B-%5Csqrt%7B2%7D%7D%20%7B2%7D%7D%7B1%7D%7D)
![\cos \theta =\frac{-\sqrt{2}} {2}}](https://tex.z-dn.net/?f=%5Ccos%20%5Ctheta%20%3D%5Cfrac%7B-%5Csqrt%7B2%7D%7D%20%7B2%7D%7D)
The formula for cotangent,
![\cot \theta =\frac{a}{b}](https://tex.z-dn.net/?f=%5Ccot%20%5Ctheta%20%3D%5Cfrac%7Ba%7D%7Bb%7D)
![\cos \theta=\frac{\frac{-\sqrt{2}} {2}}{\frac{\sqrt{2}} {2}}](https://tex.z-dn.net/?f=%5Ccos%20%5Ctheta%3D%5Cfrac%7B%5Cfrac%7B-%5Csqrt%7B2%7D%7D%20%7B2%7D%7D%7B%5Cfrac%7B%5Csqrt%7B2%7D%7D%20%7B2%7D%7D)
![\cos \theta=-1](https://tex.z-dn.net/?f=%5Ccos%20%5Ctheta%3D-1)
Therefore, the value of cosine is
and the value of cotangent is -1.