Answer:
4. ![x^{(\frac{7}{4})} = \sqrt[7]{x^4}](https://tex.z-dn.net/?f=x%5E%7B%28%5Cfrac%7B7%7D%7B4%7D%29%7D%20%3D%20%5Csqrt%5B7%5D%7Bx%5E4%7D)
Step-by-step explanation:
Here, consider the each expression and simplify it:
1.
Now, if the BASE IS SAME when multiplied, THE POWERS ARE ADDED.
![x^{\frac{1}{8} }\times x^{\frac{1}{8}} = x^{(\frac{1}{8} + \frac{1}{8})}\\= x^{(\frac{1}{4})} =\sqrt[4]{x} \\\implies x^{\frac{1}{8} }\times x^{\frac{1}{8}} = \sqrt[4]{x}](https://tex.z-dn.net/?f=x%5E%7B%5Cfrac%7B1%7D%7B8%7D%20%7D%5Ctimes%20x%5E%7B%5Cfrac%7B1%7D%7B8%7D%7D%20%20%3D%20x%5E%7B%28%5Cfrac%7B1%7D%7B8%7D%20%2B%20%5Cfrac%7B1%7D%7B8%7D%29%7D%5C%5C%3D%20x%5E%7B%28%5Cfrac%7B1%7D%7B4%7D%29%7D%20%20%3D%5Csqrt%5B4%5D%7Bx%7D%20%5C%5C%5Cimplies%20x%5E%7B%5Cfrac%7B1%7D%7B8%7D%20%7D%5Ctimes%20x%5E%7B%5Cfrac%7B1%7D%7B8%7D%7D%20%20%3D%20%5Csqrt%5B4%5D%7Bx%7D)
Hence, given statement if TRUE.
2. 
Now, if the BASE IS SAME when divided, THE POWERS ARE SUBTRACTED.
![\frac{x^{\frac{2}{5} }}{x^{\frac{1}{5} }} = x^{(\frac{2}{5} ) -(\frac{1}{5} )} = x^ {(\frac{1}{5})} = \sqrt[5]{x} \\\implies \frac{x^{\frac{2}{5} }}{x^{\frac{1}{5} }} = \sqrt[5]{x}](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E%7B%5Cfrac%7B2%7D%7B5%7D%20%7D%7D%7Bx%5E%7B%5Cfrac%7B1%7D%7B5%7D%20%7D%7D%20%3D%20x%5E%7B%28%5Cfrac%7B2%7D%7B5%7D%20%29%20-%28%5Cfrac%7B1%7D%7B5%7D%20%29%7D%20%20%3D%20x%5E%20%7B%28%5Cfrac%7B1%7D%7B5%7D%29%7D%20%3D%20%5Csqrt%5B5%5D%7Bx%7D%20%20%5C%5C%5Cimplies%20%5Cfrac%7Bx%5E%7B%5Cfrac%7B2%7D%7B5%7D%20%7D%7D%7Bx%5E%7B%5Cfrac%7B1%7D%7B5%7D%20%7D%7D%20%20%3D%20%5Csqrt%5B5%5D%7Bx%7D)
Hence, given statement if TRUE.
3. 
Now,a s we know : ![x^{(\frac{1}{a}) } = \sqrt[a]{x}](https://tex.z-dn.net/?f=x%5E%7B%28%5Cfrac%7B1%7D%7Ba%7D%29%20%7D%20%3D%20%5Csqrt%5Ba%5D%7Bx%7D)
So, solving given expression: ![x^{(\frac{7}{9})} = \sqrt[9]{x^7}](https://tex.z-dn.net/?f=x%5E%7B%28%5Cfrac%7B7%7D%7B9%7D%29%7D%20%3D%20%5Csqrt%5B9%5D%7Bx%5E7%7D)
Hence, given statement if TRUE.
4. 
Now,a s we know : ![x^{(\frac{1}{a}) } = \sqrt[a]{x}](https://tex.z-dn.net/?f=x%5E%7B%28%5Cfrac%7B1%7D%7Ba%7D%29%20%7D%20%3D%20%5Csqrt%5Ba%5D%7Bx%7D)
So, solving given expression: ![x^{(\frac{7}{4})} = \sqrt[4]{x^7} \neq \sqrt[7]{x^4}](https://tex.z-dn.net/?f=x%5E%7B%28%5Cfrac%7B7%7D%7B4%7D%29%7D%20%3D%20%5Csqrt%5B4%5D%7Bx%5E7%7D%20%20%5Cneq%20%20%5Csqrt%5B7%5D%7Bx%5E4%7D)
Hence, given statement if FALSE.