1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irina1246 [14]
4 years ago
6

Identify an equation in point-slope form for the line parallel to y=5x+2 that passes through (-6,-1)

Mathematics
1 answer:
svet-max [94.6K]4 years ago
5 0

Answer:

y = 5x + 29

Step-by-step explanation:

y=5x+2

Given equation is in the form of y=mx+b

Where m is the slope = 5

and b is the y intercept = 2

When the lines are parallel then their slopes are equal

So the slope of parallel line is also 5 (m=5)

Given that the line passes through (-6,-1)

We use point slope formula

y-y1= m (x-x1)

m=5, x1= -6, y1=-1

Plug in all the values

y - (-1) = 5(x-(-6))

y + 1= 5 (x+6)

y + 1= 5x + 30

Subtract 1 on both sides

y = 5x + 29


You might be interested in
If 2.5 mol of dust particles were laid end to end along the equator, how many times would they encircle the planet? The circumfe
Natalka [10]

Answer:

They encircle the planet 3.76\times 10^{11} times.

Step-by-step explanation:

Consider the provided information.

We have 2.5 mole of dust particles and the Avogadro's number is 6.022\times 10^{23}

Thus, the number of dust particles is:

2.5\times 6.022\times 10^{23}=15.055\times 10^{23}

Diameter of a dust particles is 10μm and the circumference of earth is 40,076 km.

Convert the measurement in meters.

Diameter: 10\mu m\times \frac{10^{-6}m}{\mu m} =10^{-5}m

If we line up the particles the distance they could cover is:

15.055\times 10^{23}\times 10^{-5}=15.055\times 10^{18}=1.5055\times 10^{19}

Circumference in meters:

40,076km\times \frac{1000m}{1km}=40,076,000 m

Therefore,

\frac{1.5055\times 10^{19}}{40,076,000} = 3.76\times 10^{11}

Hence, they encircle the planet 3.76\times 10^{11} times.

8 0
3 years ago
An elevator travels 310 feet in 10 seconds at that speed how far can this elevator travel
frez [133]

Answer:

1,860 per minute and 111,600 per hour

6 0
3 years ago
Find all solutions to the following quadratic equations, and write each equation in factored form.
dexar [7]

Answer:

(a) The solutions are: x=5i,\:x=-5i

(b) The solutions are: x=3i,\:x=-3i

(c) The solutions are: x=i-2,\:x=-i-2

(d) The solutions are: x=-\frac{3}{2}+i\frac{\sqrt{7}}{2},\:x=-\frac{3}{2}-i\frac{\sqrt{7}}{2}

(e) The solutions are: x=1,\:x=-1,\:x=\sqrt{5}i,\:x=-\sqrt{5}i

(f) The solutions are: x=1

(g) The solutions are: x=0,\:x=1,\:x=-2

(h) The solutions are: x=2,\:x=2i,\:x=-2i

Step-by-step explanation:

To find the solutions of these quadratic equations you must:

(a) For x^2+25=0

\mathrm{Subtract\:}25\mathrm{\:from\:both\:sides}\\x^2+25-25=0-25

\mathrm{Simplify}\\x^2=-25

\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\\\x=\sqrt{-25},\:x=-\sqrt{-25}

\mathrm{Simplify}\:\sqrt{-25}\\\\\mathrm{Apply\:radical\:rule}:\quad \sqrt{-a}=\sqrt{-1}\sqrt{a}\\\\\sqrt{-25}=\sqrt{-1}\sqrt{25}\\\\\mathrm{Apply\:imaginary\:number\:rule}:\quad \sqrt{-1}=i\\\\\sqrt{-25}=\sqrt{25}i\\\\\sqrt{-25}=5i

-\sqrt{-25}=-5i

The solutions are: x=5i,\:x=-5i

(b) For -x^2-16=-7

-x^2-16+16=-7+16\\-x^2=9\\\frac{-x^2}{-1}=\frac{9}{-1}\\x^2=-9\\\\\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\x=\sqrt{-9},\:x=-\sqrt{-9}

The solutions are: x=3i,\:x=-3i

(c) For \left(x+2\right)^2+1=0

\left(x+2\right)^2+1-1=0-1\\\left(x+2\right)^2=-1\\\mathrm{For\:}\left(g\left(x\right)\right)^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\\\x+2=\sqrt{-1}\\x+2=i\\x=i-2\\\\x+2=-\sqrt{-1}\\x+2=-i\\x=-i-2

The solutions are: x=i-2,\:x=-i-2

(d) For \left(x+2\right)^2=x

\mathrm{Expand\:}\left(x+2\right)^2= x^2+4x+4

x^2+4x+4=x\\x^2+4x+4-x=x-x\\x^2+3x+4=0

For a quadratic equation of the form ax^2+bx+c=0 the solutions are:

x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:}\quad a=1,\:b=3,\:c=4:\quad x_{1,\:2}=\frac{-3\pm \sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}

x_1=\frac{-3+\sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}=\quad -\frac{3}{2}+i\frac{\sqrt{7}}{2}\\\\x_2=\frac{-3-\sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}=\quad -\frac{3}{2}-i\frac{\sqrt{7}}{2}

The solutions are: x=-\frac{3}{2}+i\frac{\sqrt{7}}{2},\:x=-\frac{3}{2}-i\frac{\sqrt{7}}{2}

(e) For \left(x^2+1\right)^2+2\left(x^2+1\right)-8=0

\left(x^2+1\right)^2= x^4+2x^2+1\\\\2\left(x^2+1\right)= 2x^2+2\\\\x^4+2x^2+1+2x^2+2-8\\x^4+4x^2-5

\mathrm{Rewrite\:the\:equation\:with\:}u=x^2\mathrm{\:and\:}u^2=x^4\\u^2+4u-5=0\\\\\mathrm{Solve\:with\:the\:quadratic\:equation}\:u^2+4u-5=0

u_1=\frac{-4+\sqrt{4^2-4\cdot \:1\left(-5\right)}}{2\cdot \:1}=\quad 1\\\\u_2=\frac{-4-\sqrt{4^2-4\cdot \:1\left(-5\right)}}{2\cdot \:1}=\quad -5

\mathrm{Substitute\:back}\:u=x^2,\:\mathrm{solve\:for}\:x\\\\\mathrm{Solve\:}\:x^2=1=\quad x=1,\:x=-1\\\\\mathrm{Solve\:}\:x^2=-5=\quad x=\sqrt{5}i,\:x=-\sqrt{5}i

The solutions are: x=1,\:x=-1,\:x=\sqrt{5}i,\:x=-\sqrt{5}i

(f) For \left(2x-1\right)^2=\left(x+1\right)^2-3

\left(2x-1\right)^2=\quad 4x^2-4x+1\\\left(x+1\right)^2-3=\quad x^2+2x-2\\\\4x^2-4x+1=x^2+2x-2\\4x^2-4x+1+2=x^2+2x-2+2\\4x^2-4x+3=x^2+2x\\4x^2-4x+3-2x=x^2+2x-2x\\4x^2-6x+3=x^2\\4x^2-6x+3-x^2=x^2-x^2\\3x^2-6x+3=0

\mathrm{For\:}\quad a=3,\:b=-6,\:c=3:\quad x_{1,\:2}=\frac{-\left(-6\right)\pm \sqrt{\left(-6\right)^2-4\cdot \:3\cdot \:3}}{2\cdot \:3}\\\\x_{1,\:2}=\frac{-\left(-6\right)\pm \sqrt{0}}{2\cdot \:3}\\x=\frac{-\left(-6\right)}{2\cdot \:3}\\x=1

The solutions are: x=1

(g) For x^3+x^2-2x=0

x^3+x^2-2x=x\left(x^2+x-2\right)\\\\x^2+x-2:\quad \left(x-1\right)\left(x+2\right)\\\\x^3+x^2-2x=x\left(x-1\right)\left(x+2\right)=0

Using the Zero Factor Theorem: = 0 if and only if = 0 or = 0

x=0\\x-1=0:\quad x=1\\x+2=0:\quad x=-2

The solutions are: x=0,\:x=1,\:x=-2

(h) For x^3-2x^2+4x-8=0

x^3-2x^2+4x-8=\left(x^3-2x^2\right)+\left(4x-8\right)\\x^3-2x^2+4x-8=x^2\left(x-2\right)+4\left(x-2\right)\\x^3-2x^2+4x-8=\left(x-2\right)\left(x^2+4\right)

Using the Zero Factor Theorem: = 0 if and only if = 0 or = 0

x-2=0:\quad x=2\\x^2+4=0:\quad x=2i,\:x=-2i

The solutions are: x=2,\:x=2i,\:x=-2i

3 0
3 years ago
What polyhedron can be formed from a net diagram that has 2 congruent hexagons and 6 congruent rectangles?
nexus9112 [7]
A) hexagonal prism......................................................................
6 0
3 years ago
The conservation club has 32 members. There are 18 girls in the club.
guapka [62]
The amount of girls in the club is 18 out of the 32 members.
To find the amount of boys there, we subtract 18 out of 32
32 - 18 = 14
so there are 14 boys in the club

Now to find the ratio of girls to boys...
18/14
simplified to 9/7 (option D.)

Hope this helps :)
3 0
3 years ago
Read 2 more answers
Other questions:
  • If the equation of a circle is (x + 5)2 + (y - 7)2 = 36, its center point is
    5·1 answer
  • Julia finds that she can mail a 10 pound package for $5.10 and a 15 pound package for $8.85.What is the constanrt of proportiona
    5·1 answer
  • Drew and Tim work at a recycling plant. Drew can sort a batch of recyclables in 2 hours alone while Tim can do it in 3 for the s
    7·1 answer
  • #3 please help I will give you 10 pints
    13·1 answer
  • Hurry I need it quickly
    7·1 answer
  • Select the correct answer.
    5·1 answer
  • What is the mode of the data set?
    9·1 answer
  • An object has the diameter of 21.3. What is the area.
    8·1 answer
  • Which expression represents the volume of this prism?
    6·2 answers
  • Consider trapezoid LMNO.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!