
<u>We </u><u>have</u><u>, </u>
- Line segment AB
- The coordinates of the midpoint of line segment AB is ( -8 , 8 )
- Coordinates of one of the end point of the line segment is (-2,20)
Let the coordinates of the end point of the line segment AB be ( x1 , y1 ) and (x2 , y2)
<u>Also</u><u>, </u>
Let the coordinates of midpoint of the line segment AB be ( x, y)
<u>We </u><u>know </u><u>that</u><u>, </u>
For finding the midpoints of line segment we use formula :-

<u>According </u><u>to </u><u>the </u><u>question</u><u>, </u>
- The coordinates of midpoint and one of the end point of line segment AB are ( -8,8) and (-2,-20) .
<u>For </u><u>x </u><u>coordinates </u><u>:</u><u>-</u>





<h3><u>Now</u><u>, </u></h3>
<u>For </u><u>y </u><u>coordinates </u><u>:</u><u>-</u>





Thus, The coordinates of another end points of line segment AB is ( -14 , 36)
Hence, Option A is correct answer
Answer:
See below
Step-by-step explanation:
![\sqrt[3]{49} = 3.65930571002 \approx3.66 \\ \\ so \: \sqrt[3]{49} should \: lie \: at \: 3.6 \: which \: \\ fall \: between \: 3 \: and \: 4.](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B49%7D%20%20%3D%203.65930571002%20%5Capprox3.66%20%5C%5C%20%20%5C%5C%20so%20%5C%3A%20%20%5Csqrt%5B3%5D%7B49%7D%20should%20%5C%3A%20lie%20%5C%3A%20at%20%5C%3A%203.6%20%5C%3A%20which%20%5C%3A%20%20%5C%5C%20fall%20%5C%3A%20between%20%5C%3A%203%20%5C%3A%20and%20%5C%3A%204.)
Actually Lin did a mistake, she obtained square root and not cube root.
Answer:
The sale price will be: $215.10
Step-by-step explanation:
We know that:
Sale price = Regular price × (100% - Discount %)
= Regular price × (100% - 10%)
= 239 × 90%
= 239 × 0.9
= 215. 10 $
Therefore, the sale price will be: $215. 10
Answer:
f(1/2) = -2
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
Step-by-step explanation:
<u>Step 1: Define</u>
f(x) = 8x - 6
f(1/2) is x = 1/2
<u>Step 2: Evaluate</u>
- Substitute in <em>x</em>: f(1/2) = 8(1/2) - 6
- Multiply: f(1/2) = 4 - 6
- Subtract: f(1/2) = -2