The right answer is “The classroom has 5,180 seats “
a) For 900 units of currency X, at an exchange rate of y = 1.05x, you could get <u>945 of currency Y.</u>
b) The inverse function is x is <u>0.9524y</u> and it represents the conversion of units of currency Y to units of currency X.
c) For 46 units of currency Y, at the exchange rate of x = 0.9524y, you could get <u>43.81 of currency X</u>.
<h3>What is an exchange rate?</h3>
An exchange rate is a value that a currency has with another.
The exchange rate shows the proportion or ratio at which two currencies are exchanged.
<h3>Data and Calculations:</h3>
The exchange rate of X (x) to Y 9y) is y = 1.05x.
For 900 units of currency X, you could get 945 of currency Y (1.05 x 900)
The inverse function is x = 0.9524y (900/945)y
For 46 units of currency Y, you could get = 43.81 of currency X (0.9524 x 46).
Learn more about exchange rates at brainly.com/question/4711402
#SPJ1
Step-by-step explanation:

- Cost of one dozen of note books ( 12 note books ) = Rs 252


Finding the cost of 1 note book :
⟼ 
Finding the cost of 10 note books :
⟼ 

Hope I helped ! ツ
Have a wonderful day / night ! ♡
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
Answer:
Confidence Interval for the mean
Step-by-step explanation:
Confidence interval is made using the observations of a <em>sample</em> of data obtained from a population, so it is constructed in such a way, that, with a certain <em>level of confidence </em>(this is the statement mentioned in the question), that is, one could have a percentage of probability that the interval, or range around the value obtained, frequently 95%, contains the true value of a population parameter (in this case, the population mean).
It is one way to extract information from a population using a sample of it. This kind of information is what inference statistic is always looking for.
An <u>approximation</u> about how to construct this interval or range:
- Select a random sample.
- For the specific case of a <em>mean</em>, you need to calculate the mean of the <em>sample </em>(sample mean), and, if standard deviation is unknown or not mentioned, also calculate the sample standard deviation.
- With this information, and acknowledged that these values follows a standard normal distribution (a normal distribution with mean 0 and a standard deviation of 1), represented by random variable Z, one can use all this information to calculate a <em>confidence interval for the mean</em>, with a certain confidence previously choosen (for example, 95%), that the population mean must be in this interval or <em>range around this sample mean.</em>