1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nataly [62]
3 years ago
9

Convert the repeating decimal into a fraction: 0.555

Mathematics
1 answer:
Rasek [7]3 years ago
6 0
555/1000 hope this helps
You might be interested in
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
2 years ago
Help *****Graph Function*****
Alecsey [184]

I believe the answer is B.



Sorry is it's not but i strongly believe it is!!!

7 0
3 years ago
Please help asap!!!
Ganezh [65]
Take a better pic plz
4 0
3 years ago
Audrey has $120 to spend on a tennis racket and lessons the racket cost $45 and the lessons cost $15 per hour to find the variab
Leni [432]

Answer:

120 = 15x + 45   5 hours of lessons

Step-by-step explanation:

120 is total money so that goes on one side.

45 is a one-time cost so it is on its own.

15 per hour is another cost but this one depends on a variable so it has an x.

X represents the number of hours.

You put this together to from the equation: 120 = 15x + 45.

Subtract 45 from both sides: 75 = 15x

Divide 15 from both sides: 5 = x.

X = hours so 5 hours

7 0
3 years ago
Read 2 more answers
Need help on this ASAP
vodomira [7]
76 granola bars
to solve this, you need to multiply 15 by 5 for the big boxes and 8 by 2 for the small boxes. 15 x 2 = 60 and 8 x 2 = 16, therefore adding them together gets you 76.
8 0
3 years ago
Other questions:
  • Do you have a sample of read, draw and write problems for 4th grade math to review for a test?
    9·1 answer
  • -1 1/4 a = 1 3/4 (in fraction)
    11·1 answer
  • At a baseball game, the probability that a fan brings a glove is 0.08. The probability that a fan is left-handed is 0.12. What i
    6·2 answers
  • What is 20% of 60?<br> A. 1.2<br> B. 12<br> C. 40<br> D. 120
    7·2 answers
  • 3. De acuerdo con los anteriores problemas.
    9·1 answer
  • <img src="https://tex.z-dn.net/?f=%5Coverline%7BAB%7D" id="TexFormula1" title="\overline{AB}" alt="\overline{AB}" align="absmidd
    6·2 answers
  • What percent is 54 of 60
    5·2 answers
  • What is the experimental probability of rolling a number less than 3?
    7·1 answer
  • The sum of the interior angles of a triangle equals?<br><br> 44<br><br> 180<br><br> 300<br><br> 160
    12·2 answers
  • The length of a rectangle is 4 meters less than twice the width. If the area of the rectangle is 286 square​ meters, find the di
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!