Step-by-step explanation:
<h3><u>Given :-</u></h3>
[1+(1/Tan²θ)] + [ 1+(1/Cot²θ)]
<h3>
<u>Required To Prove :-</u></h3>
[1+(1/Tan²θ)]+[1+(1/Cot²θ)] = 1/(Sin²θ-Sin⁴θ)
<h3><u>Proof :-</u></h3>
On taking LHS
[1+(1/Tan²θ)] + [ 1+(1/Cot²θ)]
We know that
Tan θ = 1/ Cot θ
and
Cot θ = 1/Tan θ
=> (1+Cot²θ)(1+Tan²θ)
=> (Cosec² θ) (Sec²θ)
Since Cosec²θ - Cot²θ = 1 and
Sec²θ - Tan²θ = 1
=> (1/Sin² θ)(1/Cos² θ)
Since , Cosec θ = 1/Sinθ
and Sec θ = 1/Cosθ
=> 1/(Sin²θ Cos²θ)
We know that Sin²θ+Cos²θ = 1
=> 1/[(Sin²θ)(1-Sin²θ)]
=> 1/(Sin²θ-Sin²θ Sin²θ)
=> 1/(Sin²θ - Sin⁴θ)
=> RHS
=> LHS = RHS
<u>Hence, Proved.</u>
<h3><u>Answer:-</u></h3>
[1+(1/Tan²θ)]+[1+(1/Cot²θ)] = 1/(Sin²θ-Sin⁴θ)
<h3><u>Used formulae:-</u></h3>
→ Tan θ = 1/ Cot θ
→ Cot θ = 1/Tan θ
→ Cosec θ = 1/Sinθ
→ Sec θ = 1/Cosθ
<h3><u>Used Identities :-</u></h3>
→ Cosec²θ - Cot²θ = 1
→ Sec²θ - Tan²θ = 1
→ Sin²θ+Cos²θ = 1
Hope this helps!!
An internship or apprenticeship
t (23) ≤ 97 - 23
The minus 23 at the back represents the feet she already descended before what the question wants us to calculate
≤ is used instead of < because it states more than, not "equal or more than" (meaning 97 sharp is fine)
The coordinates of the vertex for the quadratic function are given as follows: (100,10).
<h3>What is the vertex of a quadratic equation?</h3>
A quadratic equation is modeled by:

The vertex is given by:

In which:
In this problem, the function is given as follows:
y = -x²/1000 + x/5
y = -0.001x² + 0.2x.
Hence the coefficients are a = -0.001, b = 0.2, c = 0 and the coordinates of the vertex are given as follows:
More can be learned about the vertex of a quadratic function at brainly.com/question/24737967
#SPJ1