A set of data has a normal distribution with a mean of 5.1 and a standard deviation of 0.9. Find the percent of data between 4.2 and 5.1.
Answer: The correct option is B) about 34%
Proof:
We have to find 
To find
, we need to use z score formula:
When x = 4.2, we have:


When x = 5.1, we have:


Therefore, we have to find 
Using the standard normal table, we have:
= 

or 34.13%
= 34% approximately
Therefore, the percent of data between 4.2 and 5.1 is about 34%
Answer:
what function
Step-by-step explanation:
Answer:
<h2>V = 729</h2>
Step-by-step explanation:
The formula of a volume of a cube with an edge <em>a</em>
<h3>
V = a³</h3>
We have <em>a </em>=<em> </em>9 . Substitute:
<h3>V = 9³ = 9 · 9 · 9 = 729</h3>
Equations:
2x+105=-3x+130
<em>subtract</em><em> </em><em>2x</em><em> </em><em>from</em><em> </em><em>both</em><em> </em><em>sides</em><em> </em>
<em>105</em><em>=</em><em> </em><em>-5x</em><em>+</em><em>130</em>
<em>Subtract</em><em> </em><em>130</em><em> </em><em>from</em><em> </em><em>both</em><em> </em><em>sides</em>
<em>-5x</em><em>=</em><em> </em><em>-25</em>
<em>isolate</em><em> </em><em>the</em><em> </em><em>variable</em>
<em>x</em><em>=</em><em>5</em><em> </em>
<u>Plug</u><u> </u><u>back</u><u> </u><u>in</u>
<u>2</u><u>(</u><u>5</u><u>)</u><u>+</u><u>105</u><u>=</u><u> </u><u>-3</u><u>(</u><u>5</u><u>)</u><u>+</u><u>130</u>
<u>115</u><u>=</u><u> </u><u> </u><u>115</u>
Answer: 49
Step-by-step explanation:
50−16/4+3
=50−4+3
=46+3
=49