Part (i)
I'm going to use the notation T(n) instead of 
To find the first term, we plug in n = 1
T(n) = 2 - 3n
T(1) = 2 - 3(1)
T(1) = -1
The first term is -1
Repeat for n = 2 to find the second term
T(n) = 2 - 3n
T(2) = 2 - 3(2)
T(2) = -4
The second term is -4
<h3>Answers: -1, -4</h3>
==============================================
Part (ii)
Plug in T(n) = -61 and solve for n
T(n) = 2 - 3n
-61 = 2 - 3n
-61-2 = -3n
-63 = -3n
-3n = -63
n = -63/(-3)
n = 21
Note that plugging in n = 21 leads to T(21) = -61, similar to how we computed the items back in part (i).
<h3>Answer: 21st term</h3>
===============================================
Part (iii)
We're given that T(n) = 2 - 3n
Let's compute T(2n). We do so by replacing every copy of n with 2n like so
T(n) = 2 - 3n
T(2n) = 2 - 3(2n)
T(2n) = 2 - 6n
Now subtract T(2n) from T(n)
T(n) - T(2n) = (2-3n) - (2-6n)
T(n) - T(2n) = 2-3n - 2+6n
T(n) - T(2n) = 3n
Then set this equal to 24 and solve for n
T(n) - T(2n) = 24
3n = 24
n = 24/3
n = 8
This means 2n = 2*8 = 16. So subtracting T(8) - T(16) will get us 24.
<h3>Answer: 8</h3>
Answer:
Prachi was 5 kilometers east of her home when she began driving farther east at 70 kilometers per hour.
Let f(n) be Prachi's distance from her home at the beginning of the nth hour of her drive.
f is an arithmetic sequence.
Write an explicit formula for the sequence.
f(n) = 70n + 5
Step-by-step explanation:
Answer:
he is fifty years old
Step-by-step explanation:
six years ago he would have been 44 yearsold
Answer: The amount of money each student raised = $2
Step-by-step explanation:
Given : In charity
Total students participate= 456
Total collection = $912
Each student brought in the same amount of money , then the amount each student raised = 

Hence, the amount of money each student raised is $2.