6.)17/12 7.)9/10 8)1 1/6 9.)1 3/8 10.)7/6 11.)7/10 12.)1 1/8
Answer:
And we can find this probability on this way:
We expect around 68.27% between the two scores provided.
Step-by-step explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Solution to the problem
Let X the random variable that represent the scores of a population, and for this case we know the distribution for X is given by:
Where
and
We are interested on this probability
And the best way to solve this problem is using the normal standard distribution and the z score given by:
If we apply this formula to our probability we got this:
And we can find this probability on this way:
We expect around 68.27% between the two scores provided.
Answer:
we can not reject any value
Step-by-step explanation: From data we can test the highest and the lowest value to evaluate if one of these values are out of certain confidence Interval
If we established CI = 95 % then α = 5 % and α/2 = 0,025
From data we find the mean of the values
μ₀ = 12,03 and σ = 0,07
From z table we find z score for 0,025 is z(c) = ± 1,96
So limits of our CI are:
12,03 + 1,96 = 13,99
12,03 - 1,96 = 10,07
And all our values are within ( 10,07 , 13,99)
So we can not reject any value
Answer: 2
Step-by-step explanation:
The slope intercept form states that y=mx+b
M represents the slope.