A combination is an unordered arrangement of r distinct objects in a set of n objects. To find the number of permutations, we use the following equation:
n!/((n-r)!r!)
In this case, there could be 0, 1, 2, 3, 4, or all 5 cards discarded. There is only one possible combination each for 0 or 5 cards being discarded (either none of them or all of them). We will be the above equation to find the number of combination s for 1, 2, 3, and 4 discarded cards.
5!/((5-1)!1!) = 5!/(4!*1!) = (5*4*3*2*1)/(4*3*2*1*1) = 5
5!/((5-2)!2!) = 5!/(3!2!) = (5*4*3*2*1)/(3*2*1*2*1) = 10
5!/((5-3)!3!) = 5!/(2!3!) = (5*4*3*2*1)/(2*1*3*2*1) = 10
5!/((5-4)!4!) = 5!/(1!4!) = (5*4*3*2*1)/(1*4*3*2*1) = 5
Notice that discarding 1 or discarding 4 have the same number of combinations, as do discarding 2 or 3. This is being they are inverses of each other. That is, if we discard 2 cards there will be 3 left, or if we discard 3 there will be 2 left.
Now we add together the combinations
1 + 5 + 10 + 10 + 5 + 1 = 32 choices combinations to discard.
The answer is 32.
-------------------------------
Note: There is also an equation for permutations which is:
n!/(n-r)!
Notice it is very similar to combinations. The only difference is that a permutation is an ORDERED arrangement while a combination is UNORDERED.
We used combinations rather than permutations because the order of the cards does not matter in this case. For example, we could discard the ace of spades followed by the jack of diamonds, or we could discard the jack or diamonds followed by the ace of spades. These two instances are the same combination of cards but a different permutation. We do not care about the order.
I hope this helps! If you have any questions, let me know :)
When a customer has a 6 pound Chihuahua, the cost that will be charged is $5.00.
<h3>How to calculate the cost?</h3>
a. If a customer has a 6 pound Chihuahua, how much would you charge?
It should be noted that from the information given, for dogs that weigh 0 to 15 pounds, the amount charged is $5.00.
b. If a customer has a 65 pound Labrador, how much would you charge?
It should be noted that for dogs over 45 pounds, the amount that's charged is $9.00
There, the amount charged will be $9.00.
Learn more about cost on:
brainly.com/question/25109150
#SPJ1
<em>The complete exercise with the answer options is as follows:</em>
Mancini's Pizzeria sells four types of pizza crust. Last week, the owner tracked the number sold of each type, and this is what he found.
Type of Crust Number Sold
Thin crust 364
Thick crust 240
Stuffed crust 176
Pan style 260
Based on this information, of the next 3000 pizzas he sells, how many should he expect to be thick crust? Round your answer to the nearest whole number. Do not round any intermediate calculations.
Answer:
692 thick crust pizzas
Step-by-step explanation:
With the data given in the exercise, we must first find the total number of pizzas, then we must find the proportion between the thick crust pizzas and the total number of pizzas, finally we must propose a rule of three to find the new proportion of crust pizzas thick on a total of 3000 pizzas.
Type of Crust Number Sold
Thin crust 364
Thick crust 240
Stuffed crust 176
Pan style 260
total pizzas : 1040
Now we must calculate for 3000 pizzas how much would be the total of thick crust pizzas.For that we must use the relationship found, that is, in 1040 pizzas there are 240 thick crust pizzas
1040→240
3000→x
x=
= 692
Now we have a new proportion that out of 3000 pizzas there are a total of 692 thick crust pizzas
I order to solve this you have to find out how how much root beer there is to the total amount of candy. 12/27. Then you find out what the percentage of root beer there is by dividing 12 by 27. It’ll give you a decimal point. Percentage has a maximum of 100%. And you’ll find out what percent based on this decimal. Factor it out of 1. The percentage you get is .44. By factoring out of 1 you can find out that the percentage is 44%. So the probability of finding a root beer out of all the candy is roughly 44%