Answer:
(x +5)²/4 +(y +8)²/36 = 1
Step-by-step explanation:
The equation of an ellipse with center (h, k) and semi-axes "a" and "b" (where "a" is in the x-direction and "b" is in the y-direction) can be written as ...
((x -h)/a)² +((y -k)/b)² = 1
Here, the center is at (h, k) = (-5, -8), and the semi-minor axis is a=2, while the semi-major axis is b=6.
The equation can be written as ...
((x +5)/2)² +((y +8)/6)² = 1
More conventionally, it is written ...
(x +5)²/4 +(y +8)²/36 = 1
Given
R is the interior of ∠ TUV.
m∠ RUV=30degrees, m∠ TUV=3x+16, and m∠ TUR=x+10.
Find the value of x and the m ∠TUV.
To proof
As given in the question
m ∠TUV=3x+16, and m ∠TUR=x+10
thus
m∠ RUV = m∠ TUV - m∠ TUR
= 3x + 16 - x -10
= 2x + 6
As given
m ∠RUV=30°
compare both the values
we get
30 = 2x + 6
24 = 2x
12 = x
put this value in the m ∠TUV= 3x+16
m ∠TUV= 12× 3 +16
= 52°
Hence proved
Answer:
Step-by-step explanation:
12.5z - 6.4 =-8z + 3(1.5z - 0.5)
12.5z - 6.4 = - 8z + 4.5z - 1.5
12.5z - 6.4 = - 3.5z - 1.5
Bringing like terms on one side
12.5z + 3.5z = - 1.5 + 6.4
16z = 4.9
z = 4.9/16
I think the answer is:
Rectangle: X X O X X
Rhombus: X X X X O
Square: X X X X X
I hope you got a good grade!!!
Answer:
the answer to the question is 8