Answer:
x=−7
Step-by-step explanation:
Step 1: Add 5 to both sides.
−3x−5+5=16+5
−3x=21
Step 2: Divide both sides by -3.
−3x/−3=21/−3
The answer to your question is 34.13%
The Pythagorean's Theorem for our situation would look like this:

So let's call the short leg s, the long leg l and the hypotenuse h. It appears that all our measurements are based on the measurement of the short leg. The long leg is 4 more than twice the short leg, so that expression is l=2s+4; the hypotenuse measure is 6 more than twice the short leg, so that expression is h=2s+6. And the short leg is just s. Now we can rewrite our formula accordingly:

And of course we have to expand. Doing that will leave us with

Combining like terms we have

Our job now is to get everything on one side of the equals sign and solve for s

That is now a second degree polynomial, a quadratic to be exact, and it can be factored several different ways. The easiest is to figure what 2 numbers add to be -8 and multiply to be -20. Those numbers would be 10 and -2. Since we are figuring out the length of the sides, AND we know that the two things in math that will never EVER be negative are time and distance/length, -2 is not an option. That means that the short side, s, measures 10. The longer side, 2s+4, measures 2(10)+4 which is 24, and the hypotenuse, 2s+6, measures 2(10)+6 which is 26. So there you go!
Answer:
£1 = 25 hits
Step-by-step explanation:
Will get the equation is

so, X=25
x = What we want to find
Answer:
a) 0.283 or 28.3%
b) 0.130 or 13%
c) 0.4 or 40%
d) 30.6 mm
Step-by-step explanation:
z-score of a single left atrial diameter value of healthy children can be calculated as:
z=
where
- X is the left atrial diameter value we are looking for its z-score
- M is the mean left atrial diameter of healthy children (26.7 mm)
- s is the standard deviation (4.7 mm)
Then
a) proportion of healthy children who have left atrial diameters less than 24 mm
=P(z<z*) where z* is the z-score of 24 mm
z*=
≈ −0.574
And P(z<−0.574)=0.283
b) proportion of healthy children who have left atrial diameters greater than 32 mm
= P(z>z*) = 1-P(z<z*) where z* is the z-score of 32 mm
z*=
≈ 1.128
1-P(z<1.128)=0.8703=0.130
c) proportion of healthy children have left atrial diameters between 25 and 30 mm
=P(z(25)<z<z(30)) where z(25), z(30) are the z-scores of 25 and 30 mm
z(30)=
≈ 0.702
z(25)=
≈ −0.362
P(z<0.702)=0.7587
P(z<−0.362)=0.3587
Then P(z(25)<z<z(30)) =0.7587 - 0.3587 =0.4
d) to find the value for which only about 20% have a larger left atrial diameter, we assume
P(z>z*)=0.2 or 20% where z* is the z-score of the value we are looking for.
Then P(z<z*)=0.8 and z*=0.84. That is
0.84=
solving this equation for X we get X=30.648