1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
worty [1.4K]
3 years ago
13

Using only a certain percentage of a work, for example one page out of a 300-page work will automatically qualify as fair use in

court determinations." Please choose answer (a) if this statement is true or (b) if this statement is false Select one: a. True. b. False.
Mathematics
1 answer:
madreJ [45]3 years ago
8 0

Answer:

b. False

Step-by-step explanation:

Selecting one out of three hundred for a court case is injustice.

Even if it's not a court case, the probability of getting a desired information about a book of 300 pages just by selecting one page is very low and minimal.

Let's do the math.

1/300 = 0.00333333

In percentage= 0.3333 percent

Not even up to one.

At least, choosing according to percentage , it should be above 20 percent, at least 30 pages.

Thank you.

You might be interested in
What is the median of the following numbers: 9, 10, 4, 6, 3, 7, 8, 2, 5. 54 8 7 6
qwelly [4]
The median of the numbers would be 7.5
8 0
3 years ago
Consider U = {x|x is a real number}. A = {x|x ∈ U and x + 2 > 10} B = {x|x ∈ U and 2x > 10} Which statements are true? 5 ∉
-Dominant- [34]

x+2 > 10 solves to x > 8 after we subtract 2 from both sides

So set A is the set of real numbers that are larger than 8. The value 8 itself is not in set A. The same can be said about 5 as well.


Set B is the set of values that are larger than 5 since 2x > 10 turns into x > 5 after dividing both sides by 2. The value x = 5 is not in set B since x > 5 would turn into 5 > 5 which is false. The values x = 6, x = 8, and x = 9 are in set B.


----------------


Summarizing everything, we can say...

5 is not in set A. True

5 is in set B. False

6 is in set A. False

6 is not in set B. False

8 is not in set A. True

8 is in set B. True

9 is in set A. True

9 is not in set B. False


5 0
3 years ago
Read 2 more answers
Steve is turning half his backyard into a chicken fan. His backyard is a 24 m x 45 m rectangle. He wants to put a chicken wire f
Phoenix [80]

Answer:

51 meters

Step-by-step explanation:

Steve is turning half his backyard into a chicken fan. His backyard is a 24 m x 45 m rectangle. He wants to put a chicken wire fence that stretches diagonally from one corner to the opposite corner. How many meters of fencing will Steve need?

We are to find the meters of fencing for the diagonal.

We solve the question using Pythagoras Theorem

= c² = a² + b²

Where

c = Diagonal

a = Width

b =Length

Diagonal² = Width² + Length ²

Hence:

Diagonal ² = 45² + 24²

Diagonal = √45² + 24²

Diagonal = √(2601)

Diagonal = 51 m

Therefore, the meters of fencing for the diagonal that Steve would be needing = 51 meters

7 0
3 years ago
A+b=180<br> A=-2x+115<br> B=-6x+169<br> What is the value of B?
natulia [17]
The answer is:  " 91 " .   
___________________________________________________
                    →    " B = 91 " .
__________________________________________________ 

Explanation:
__________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to  solve for "B"
_____________________________________________________

(115 − 2x) + (169 − 6x) = 

  115 − 2x + 169 − 6x = ?

→ Combine the "like terms" ;  as follows:

      + 115 + 169 = + 284 ; 

 − 2x − 6x = − 8x ; 
_________________________________________________________
And rewrite as:

 " − 8x + 284 " ; 
_________________________________________________________
   →  " - 8x + 284 = 180 " ; 

Subtract:  "284" from each side of the equation:

  →  "  - 8x + 284 − 284 = 180 − 284 " ; 

to get:

 →  " -8x = -104 ; 

Divide EACH SIDE of the equation by "-8 " ; 
    to isolate "x" on one side of the equation; & to solve for "x" ; 

→ -8x / -8 = -104/-8 ; 

→  x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  

↔  B = 169 − 6x ;  

         = 169 − 6(13) ;   ===========> Plug in our "solved value, "13",  for "x" ;

         = 169 − (78) ; 

         = 91 ;

   B   = " 91 " .
__________________________________________________
The answer is:  " 91 " . 
____________________________________________________
     →     " B = 91 " . 
____________________________________________________
Now;  let us check our answer:
____________________________________________________
               →   A + B = 180 ;  
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ;  as follows:
________________________________________________________

→  A + 91 = ? 180? ;  

↔  A = ? 180 − 91 ? ; 

→  A = ?  -89 ?  Yes!
________________________________________________________
→  " A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

Plug in our solved value for "x"; which is: "13" ; 

" A = 115 − 2x " ; 

→  A = ? 115 − 2(13) ? ;

→  A = ? 115 − (26) ? ; 

→  A = ? 29 ? Yes!
_________________________________________________ 
METHOD 2)
_________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→  Solve for the value of "B" :
_______________________________________________________
 A + B = 180 ;  

→ B = 180 − A ; 

→ B = 180 − (115 − 2x) ; 

→ B = 180 − 1(115 − 2x) ;  ==========> {Note the "implied value of "1" } ; 
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________  a(b + c)  = ab +  ac ;  <u><em>AND</em></u>:
  a(b − c)  = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
              →      " − 1(115 − 2x)  " ; 
________________________________________________________

→  "  − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;

                                =  -115 − (-2x) ;
                         
                                =  -115  +  2x ;        
________________________________________________________
So we can bring down the:  " {"B = 180 " ...}"  portion ; 

→and rewrite:
_____________________________________________________

→  B = 180 − 115 + 2x ; 

→  B = 65 + 2x ; 
_____________________________________________________
Now;  given:   "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→ " B =  169 − 6x  =  65 + 2x " ; 
______________________________________________________
→  " 169 − 6x  =  65 + 2x "

Subtract "65" from each side of the equation;  & Subtract "2x" from each side of the equation:

→  169 − 6x − 65 − 2x  =  65 + 2x − 65 − 2x ; 

to get:

→   " - 8x + 104 = 0 " ;
 
Subtract "104" from each side of the equation:

→   " - 8x + 104 − 104 = 0 − 104 " ;

to get: 

→   " - 8x = - 104 ;

Divide each side of the equation by "-8" ; 
   to isolate "x" on one side of the equation; & to solve for "x" ; 

→  -8x / -8  = -104 / -8 ; 

to get:

→  x =  13 ; 
______________________________________________________

Now, let us solve for:  " B " ;  → {for which this very question/problem asks!} ; 

→  B = 65 + 2x ;  

Plug in our solved value, " 13 ",  for "x" ; 

→ B = 65 + 2(13) ; 

        = 65 + (26) ;  

→ B =  " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given:  "B = - 6x + 169 " ;   ↔  B = 169 − 6x = 91 ; 

When "x  = 13 " ; does: " B = 91 " ? 

→ Plug in our "solved value" of " 13 " for "x" ;

      → to see if:  "B = 91" ; (when "x = 13") ;

→  B = 169 − 6x ; 

         = 169 − 6(13) ; 

         = 169 − (78)______________________________________________________
→ B = " 91 " . 
______________________________________________________
6 0
3 years ago
What are the zeros of this function
Anestetic [448]

Answer:

X =3 and x =6

Step-by-step explanation:

Just look at the line where they cross another line,

4 0
3 years ago
Read 2 more answers
Other questions:
  • What is the answer to -10x-1=11-9x
    12·2 answers
  • Which products are negative?
    14·1 answer
  • Find the solution set for the system of equations.<br> 9x + 5y = 28<br> 5x + 9y = 56
    13·1 answer
  • If ∠o = 125°, what does ∠z equal in this figure? <br><br>    A. 180°B. 35°C. 55°D. 125°
    11·1 answer
  • What is the volume of the box if it is scaled down by a factor of 1/10?
    9·1 answer
  • Is this a function? yes or no <br><br><br> picture included ^^^^
    15·1 answer
  • Find the area of the shaded
    13·1 answer
  • A woodworker spends a total of 162 hours making 24 birdhouses. He spends the same amount of time on each birdhouse. How many hou
    12·2 answers
  • Helpppppp I’m begging
    5·1 answer
  • A washer and dryer cost a total of $964 . The cost of the washer is three times the cost of the dryer. Find the cost of each ite
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!