Answer:
The slope is 2
Step-by-step explanation:
Y = mx+b y = mx+b is the shape of the slope-intercept where m is the slope.
Answer:

Step-by-step explanation:
Step 1: Define
Difference Quotient: 
f(x) = -x² - 3x + 1
f(x + h) means that x = (x + h)
f(x) is just the normal function
Step 2: Find difference quotient
- <u>Substitute:</u>
![\frac{[-(x+h)^2-3(x+h)+1]-(-x^2-3x+1)}{h}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B-%28x%2Bh%29%5E2-3%28x%2Bh%29%2B1%5D-%28-x%5E2-3x%2B1%29%7D%7Bh%7D)
- <u>Expand and Distribute:</u>
![\frac{[-(x^2+2hx+h^2)-3x-3h+1]+x^2+3x-1}{h}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B-%28x%5E2%2B2hx%2Bh%5E2%29-3x-3h%2B1%5D%2Bx%5E2%2B3x-1%7D%7Bh%7D)
- <u>Distribute:</u>

- <u>Combine like terms:</u>

- <u>Factor out </u><em><u>h</u></em><u>:</u>

- <u>Simplify:</u>

Answer:
Step-by-step explanation:
-1, 3
Answer:
From your question, I am assuming you are talking about an absolute value graph. In this case the answer would be y = |2 + 6|
Step-by-step explanation: Always remember, when you are graphing absolute value graphs:
When you shift left or right, you put the amount you are shifting inside the absolute value sign.
When you are shifting up or down, you put the amount you are shifting outside the absolute value sign.
When shifting left on a graph, you usually think of subtraction. However, when dealing with absolute value graphs, when you are shifting left, you use addition, as you can see in this problem.
The same goes for right. You use subtraction when shifting right, contrary to what you may think.
However, when you go up, you still use addition, and when you shift down, you still use subtraction.