Hello!
log₃(x) + log₃(x - 6) = log₃(7) <=>
<=> log₃(x * (x - 6)) = log₃(7) <=>
<=> log₃(x² - 6x) = log₃(7) <=>
<=> x² - 6x = 7 <=>
<=> x² - 6x - 7 = 0 <=>
<=> x² + x - 7x - 7 = 0 <=>
<=> x * (x + 1) - 7 * (x + 1) = 0 <=>
<=> (x + 1) * (x - 7) = 0 <=>
<=> x + 1 = 0 and x - 7 = 0 <=>
<=> x = -1 and x = 7, x ∈ { 6; +∞ } <=>
<=> x = 7
Good luck! :)
Answer:

Step-by-step explanation:
From the table of function given, you would observe that if you subtract 2 from half of the x-variable values, you'd get the y-variable values.
For example, half of -8 = -4. If you add 2 to -4, you'd get: -4 + 2 = -2. Same applies to other x-values on the table.
Thus, an expression for the function represented by the table values can be written as,

Answer:
No solution
Step-by-step explanation:
21−7x=−7x−21−4
21−7x=−7x−25
21=−25
No solution
Forty three million, eighty thousand, seven hundred