Answer:
![\frac{x^2}{8} + \frac{y^2}{4}=1](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E2%7D%7B8%7D%20%20%2B%20%5Cfrac%7By%5E2%7D%7B4%7D%3D1)
Step-by-step explanation:
The directrices in this case are vertical lines, so we have a horizontal ellipse. The equation for that ellipse is:
![\frac{(x - h)^2}{a^2} + \frac{(y-k)^2}{b^2}=1](https://tex.z-dn.net/?f=%5Cfrac%7B%28x%20-%20h%29%5E2%7D%7Ba%5E2%7D%20%20%2B%20%5Cfrac%7B%28y-k%29%5E2%7D%7Bb%5E2%7D%3D1)
The center of the ellipse is (h,k), the diretrix is x = d and the foci are given by (h+c, k) and (h-c, k)
So, comparing the foci, we have that k = 0 and:
![h + c = 2](https://tex.z-dn.net/?f=h%20%2B%20c%20%3D%202)
![h - c = -2](https://tex.z-dn.net/?f=h%20-%20c%20%3D%20-2)
Adding these two equations, we have:
![2h = 0](https://tex.z-dn.net/?f=2h%20%3D%200)
![h = 0](https://tex.z-dn.net/?f=h%20%3D%200)
![c = 2](https://tex.z-dn.net/?f=c%20%3D%202)
We can find the value of a^2 using the property:
![c / a = a / d](https://tex.z-dn.net/?f=c%20%2F%20a%20%3D%20a%20%2F%20d)
Using c = 2 and d = 4, we have:
![a^2 = c * d](https://tex.z-dn.net/?f=a%5E2%20%3D%20c%20%2A%20d)
![a^2 = 8](https://tex.z-dn.net/?f=a%5E2%20%3D%208)
Now, to find b^2, we use the property:
![a^2 = b^2 + c^2](https://tex.z-dn.net/?f=a%5E2%20%3D%20b%5E2%20%2B%20c%5E2)
![8 = b^2 + 4](https://tex.z-dn.net/?f=8%20%3D%20b%5E2%20%2B%204)
![b^2 = 4](https://tex.z-dn.net/?f=b%5E2%20%3D%204)
So the equation of the ellipse is:
![\frac{x^2}{8} + \frac{y^2}{4}=1](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E2%7D%7B8%7D%20%20%2B%20%5Cfrac%7By%5E2%7D%7B4%7D%3D1)