No. No. It is not linear because the slope has to be able to be plugged in to any x, y coordinates and be placed on the line.
Answer:
30 out of 40: 75%
40 out of 50: 80%
40 out of 50 is the better score
The points you found are the vertices of the feasible region. I agree with the first three points you got. However, the last point should be (25/11, 35/11). This point is at the of the intersection of the two lines 8x-y = 15 and 3x+y = 10
So the four vertex points are:
(1,9)
(1,7)
(3,9)
(25/11, 35/11)
Plug each of those points, one at a time, into the objective function z = 7x+2y. The goal is to find the largest value of z
------------------
Plug in (x,y) = (1,9)
z = 7x+2y
z = 7(1)+2(9)
z = 7+18
z = 25
We'll use this value later.
So let's call it A. Let A = 25
Plug in (x,y) = (1,7)
z = 7x+2y
z = 7(1)+2(7)
z = 7+14
z = 21
Call this value B = 21 so we can refer to it later
Plug in (x,y) = (3,9)
z = 7x+2y
z = 7(3)+2(9)
z = 21+18
z = 39
Let C = 39 so we can use it later
Finally, plug in (x,y) = (25/11, 35/11)
z = 7x+2y
z = 7(25/11)+2(35/11)
z = 175/11 + 70/11
z = 245/11
z = 22.2727 which is approximate
Let D = 22.2727
------------------
In summary, we found
A = 25
B = 21
C = 39
D = 22.2727
The value C = 39 is the largest of the four results. This value corresponded to (x,y) = (3,9)
Therefore the max value of z is z = 39 and it happens when (x,y) = (3,9)
------------------
Final Answer: 39
-7/3, -3/4, 0.5, 2/3, 1.2
Brainliest please
325 meters if using full height of 324 meters for tower
277 meters if using observation platform height of 276 meters.
When the depression is 37 degrees, you can create a right triangle with the angles 90, 37, and 53 degrees. The distance from a point directly underneath the observer will be:
h/tan(37)
where
h = height of the observer.
And when the depression is 72 degrees, the distance will be:
h/tan(72)
So the distance between the two points will be the absolute value of:
h/tan(72) - h/tan(37)
=(tan(37)h)/tan(37)tan(72) - tan(72)h/(tan(37)tan(72))
=(tan(37)h - tan(72)h) /(tan(37)tan(72))
=h(0.75355405 - 3.077683537)/(0.75355405 * 3.077683537)
=h(0.75355405 - 3.077683537)/(0.75355405 * 3.077683537)
=h(-2.324129487/2.319200894)
=h*-1.002125125
And since we're looking for absolute value
=h*1.002125125
As for the value of "h" to use, that's unspecified in the problem. If you take h
to be the height of the Eiffel Tower, then it's 324 meters. If you take h to be
the highest observation platform on the Eiffel Tower, then it's 276 meters. In
any case, simply multiply h by the value calculated above:
=h*1.002125125
=324*1.002125125
= 324.6885406 m
=h*1.002125125
=276*1.002125125
=276.5865346