Answer:
PART A 1st order in A and 0th order in B
Part B The reaction rate increases
Explanation:
<u>PART A
</u>
The rate law of the arbitrary chemical reaction is given by
![-r_A=k\times\left[A\right]^\alpha\times\left[B\right]^\beta\bigm](https://tex.z-dn.net/?f=-r_A%3Dk%5Ctimes%5Cleft%5BA%5Cright%5D%5E%5Calpha%5Ctimes%5Cleft%5BB%5Cright%5D%5E%5Cbeta%5Cbigm)
Replacing for the data
Expression 1 
Expression 2 
Expression 3 
Making the quotient between the fist two expressions

Then the expression for 

Doing the same between the expressions 1 and 3

Then

This means that the reaction is 1st order respect to A and 0th order respect to B
.
<u>PART B
</u>
By the molecular kinetics theory, if an increment in the temperature occurs, the molecules will have greater kinetic energy and, consequently, will move faster. Thus, the possibility of colliding with another molecule increases. These collisions are necessary for the reaction. Therefore, an increase in temperature necessarily produces an increase in the reaction rate.
Answer:
Search up Cell Divison Reinforcement key and it pops up
Explanation:
Literally took 30 seconds to find online or individually ask every question.
Answer:
0.100 M AlCl₃
Explanation:
The variation of boiling point by the addition of a nonvolatile solute is called ebullioscopy, and the temperature variation is calculated by:
ΔT = W.i
Where W = nsolute/msolvent, and i is the Van't Hoff factor. Because all the substances have the same molarity, n is equal for all of them.
i = final particles/initial particles
C₆H₁₂O₆ don't dissociate, so final particles = initial particles => i = 1;
AlCl₃ dissociates at Al⁺³ and 3Cl⁻, so has 4 final particles and 1 initial particle, i = 4/1 = 4;
NaCl dissociates at Na⁺ and Cl⁻ so has 2 final particles and 1 initial particle, i = 2/1 = 2;
MgCl₂ dissociates at Mg⁺² and 2Cl⁻, so has 3 final particles and 1 initial particle, i = 3/1 = 3.
So, the solution with AlCl₃ will have the highest ΔT, and because of that the highest boiling point.
Answer:
I believe forces would be the word you are looking for.
Explanation:
I hope this is what you needed, have a great day! (;
Hey there!:
Given [ OH⁻ ] = 9.00 x 10⁻⁴
We know that : [H⁺ ] [OH⁻ ] = 1 x 10⁻¹⁴
Thus [H⁺ ] = ( 1 x 10⁻¹⁴ ) / ( 9.00 x 10⁻⁴ )
[ H⁺ ] = 1 x 10⁻¹¹ M
therefore:
pH = - log [ H⁺ ]
pH = - log [ 1 x 10⁻¹¹ ]
pH = 10.95
Therfore pH = 10.95
I hope this will help !