1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
fenix001 [56]
4 years ago
7

Please help number 1

Mathematics
1 answer:
stepladder [879]4 years ago
8 0
50/x = tan(12°)
x = 50/tan(12°) ≈ 235 . . . . ft
You might be interested in
What is the missing justification in the proof?
nataly862011 [7]
The missing justification in the proof is
<span>B) Substitution property of equality

The expression for sin</span>² x and cos² x is substituted to the other side of the equation. Since sin x = a/c, then sin² x = a²/c². Similarly, since cos x = b/c, then cos² x = b²/c². Adding to two results to the third statement.
7 0
4 years ago
Read 2 more answers
Uestion
Stella [2.4K]

Check the picture below, so the park looks more or less like so, with the paths in red, so let's find those midpoints.

~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ J(\stackrel{x_1}{-3}~,~\stackrel{y_1}{1})\qquad K(\stackrel{x_2}{1}~,~\stackrel{y_2}{3}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ 1 -3}{2}~~~ ,~~~ \cfrac{ 3 +1}{2} \right) \implies \left(\cfrac{ -2 }{2}~~~ ,~~~ \cfrac{ 4 }{2} \right)\implies JK=(-1~~,~~2) \\\\[-0.35em] ~\dotfill

~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ L(\stackrel{x_1}{5}~,~\stackrel{y_1}{-1})\qquad M(\stackrel{x_2}{-1}~,~\stackrel{y_2}{-3}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ -1 +5}{2}~~~ ,~~~ \cfrac{ -3 -1}{2} \right) \implies \left(\cfrac{ 4 }{2}~~~ ,~~~ \cfrac{ -4 }{2} \right)\implies LM=(2~~,~~-2) \\\\[-0.35em] ~\dotfill

~~~~~~~~~~~~\textit{distance between 2 points} \\\\ JK(\stackrel{x_1}{-1}~,~\stackrel{y_1}{2})\qquad LM(\stackrel{x_2}{2}~,~\stackrel{y_2}{-2})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ JKLM=\sqrt{(~~2 - (-1)~~)^2 + (~~-2 - 2~~)^2} \\\\\\ JKLM=\sqrt{(2 +1)^2 + (-2 - 2)^2} \implies JKLM=\sqrt{( 3 )^2 + ( -4 )^2} \\\\\\ JKLM=\sqrt{ 9 + 16 } \implies JKLM=\sqrt{ 25 }\implies \boxed{JKLM=5}

now, let's check the other path, JM and KL

~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ J(\stackrel{x_1}{-3}~,~\stackrel{y_1}{1})\qquad M(\stackrel{x_2}{-1}~,~\stackrel{y_2}{-3}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ -1 -3}{2}~~~ ,~~~ \cfrac{ -3 +1}{2} \right) \implies \left(\cfrac{ -4 }{2}~~~ ,~~~ \cfrac{ -2 }{2} \right)\implies JM=(-2~~,~~-1) \\\\[-0.35em] ~\dotfill

~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ K(\stackrel{x_1}{1}~,~\stackrel{y_1}{3})\qquad L(\stackrel{x_2}{5}~,~\stackrel{y_2}{-1}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ 5 +1}{2}~~~ ,~~~ \cfrac{ -1 +3}{2} \right) \implies \left(\cfrac{ 6 }{2}~~~ ,~~~ \cfrac{ 2 }{2} \right)\implies KL=(3~~,~~1) \\\\[-0.35em] ~\dotfill

~~~~~~~~~~~~\textit{distance between 2 points} \\\\ JM(\stackrel{x_1}{-2}~,~\stackrel{y_1}{-1})\qquad KL(\stackrel{x_2}{3}~,~\stackrel{y_2}{1})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ JMKL=\sqrt{(~~3 - (-2)~~)^2 + (~~1 - (-1)~~)^2} \\\\\\ JMKL=\sqrt{(3 +2)^2 + (1 +1)^2} \implies JMKL=\sqrt{( 5 )^2 + ( 2 )^2} \\\\\\ JMKL=\sqrt{ 25 + 4 } \implies \boxed{JMKL=\sqrt{ 29 }}

so the red path will be  5~~ + ~~\sqrt{29} ~~ \approx ~~ \blacksquare~~ 10 ~~\blacksquare

3 0
2 years ago
PLEASE HELP ME!!!!!
Allushta [10]

Answer: (1,7) (2,9) (3,11) (4,13)

Step-by-step explanation:

The function is y = 2x + 5. To find the y coordinates we will insert the values 1, 2, 3, and 4 for x.

y = 2(1) + 5

y = 7

So the first coordinate would be (1,7)

y = 2(2) + 5

y = 9

Second coordinate will be (2,9)

y = 2(3) + 5

y = 11

Third coordinate will be (3,11)

y = 2(4) + 5

y = 13

Fourth and final coordinate will be (4,13)

3 0
4 years ago
What is the value of x x=m x-3
Naddik [55]
If x=mx-3 (which is not clear from your input),
                                                                                               3
then x-mx = -3, or mx-1x = 3, and x(m-1) = 3, and so x = ---------
                                                                                             m-1
3 0
4 years ago
The least common denominator of two fractions is 20. If you subtract the two denominations, you get 1. What are the denominators
LekaFEV [45]
Steps
find the Least Common Multiple of the denominators (which is called the Least Common Denominator).

Change each fraction (using equivalent fractions) to make their denominators the same as the least common denominator.

Then add (or subtract) the fractions, as we wish!
your denominators stay the same so its 20

6 0
3 years ago
Other questions:
  • Make a the subject of the formula:p=2a-b <br> PLS help
    12·2 answers
  • The area of a rectangle is 20. The length is 5, and the width is (x+1). What is the value of x? What is the width of the rectang
    9·1 answer
  • PLEASE HELP 14 POINTS
    8·2 answers
  • The function g(x) = –2x – 5. Compare the slopes.
    6·2 answers
  • When 54 is divided by a number, the quotient is 9 and leaves no remainder. what is thr number?​
    12·1 answer
  • I need help filling in these boxes​
    11·2 answers
  • Which number is a counting number? Can you do both of them plz
    5·1 answer
  • cos60=5/zy ??? how do I get rid of the 5? Normally I would multiply by the denominator but that doesn't work here. The end answe
    8·1 answer
  • In triangle ABC, angle A measures 40º and angle B measures 60º. In triangle PQR, angle P measures 40º and angle Q measures 80º.
    5·1 answer
  • Find the area of this parallelogram. Be sure to include the correct unit in yo
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!