1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
11Alexandr11 [23.1K]
3 years ago
7

Which of the following steps would you perform to the system of equations below so that the equations have equal x-coefficients?

Mathematics
2 answers:
KatRina [158]3 years ago
6 0

Answer: A) Multiply both sides of the top equation by 2.

Step-by-step explanation: The x-coefficient of the first equation (the number that is next to the x) is 4, and the x-coefficient of the second equation is 8, in order to them to be equal, we need to multiply the first equation by 2 (both sides), so the correct answer is the corresponding to option A, the equations would be:

8x+4y=8 first equation (after multiply it by 2)

8x-y=18 second equation

12345 [234]3 years ago
5 0

<u>The answer is A. Multiply both sides of the top equation by 2</u>

So since we know that 4 × 2 = 8, it would only make sense to multiply both sides by 2 so that the top equation has the x coefficient be 8.

You might be interested in
5. Find the area of an equilateral triangle with a<br> perimeter of 24 in.<br> what’s the area?
Zolol [24]

Answer:

18

Step-by-step explanation:

24÷3=6 6×6=36 36÷2=18

6 0
3 years ago
Can someone please help me with this ?
Reil [10]

Answer:

y intercept=15 and slope is 3

Step-by-step explanation:

Ok so for this one we know the y intercept is 15 because the y intercept is wherever x=0 and in the table when x=0 y=15

to find slope we use (y2-y1)/(x2-x1) which when we put points (0,15) and (1,18) in for would be:

(18-15)/(1-0)

3/1

= 3

5 0
2 years ago
I don't know what sex is
alexdok [17]

Answer:

hol up

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Can someone help me with these problems? I'm in k12 and this assignment was in classkick, so if anyone already completed this an
kherson [118]

<em>                       </em><u><em>SOLVING QUESTIONS FROM 1ST PAGE</em></u>

  • Given the point B(-5, 0)

y = -3x - 5

Putting x = -5, and y = 0 in y = -3x - 5

0 = -3(-5) - 5

0 = 15 - 5

0 = 10         ∵Putting B(-5, 0) in y = -3x - 5 does not equate the equation.

As L.H.S ≠ R.H.S

So,

Does this check?

Answer: no        ∵ L.H.S ≠ R.H.S

  • Given the point C<em>(-2, 1)</em>

y = -3x - 5

Putting x = -2, and y = 1 in y = -3x - 5

1 = -3(-2) - 5

1 =  6 - 5

1 = 1         ∵Putting C(-2, 1) in y = -3x - 5 rightly equates the equation.

As L.H.S = R.H.S

So,

Does this check?

Answer: yes      ∵ L.H.S = R.H.S

  • Given the point D<em>(-1, -2)</em>

y = -3x - 5

Putting x = -1, and y = -2 in y = -3x - 5

-2 = -3(-1) - 5

-2 =  3 - 5

-2 = -2       ∵Putting D(-1, -2) in y = -3x - 5 rightly equates the equation.

As L.H.S = R.H.S

So,

Does this check?

Answer: yes       ∵ L.H.S = R.H.S

<em>                          </em><u><em>SOLVING QUESTIONS FROM 2ND PAGE</em></u>

  • Given the point B(6, 18)

y = -2x + 18

Putting x = 6, and y = 18 in y = -2x + 18

18 = -2(6) + 18

18 = -12 + 18

18 = 6         ∵Putting B(6, 18) in y = -2x + 18 does not equate the equation.

As L.H.S ≠ R.H.S

So,

Does this check?

Answer: no       ∵ L.H.S ≠ R.H.S

  • Given the point C(9, 24)

y = 2x + 6

Putting x = 9, and y = 24 in y = 2x + 6

24 = 2(9) + 6

24 = 18 + 6

24 = 24      ∵Putting C(9, 24) in y = 2x + 6 rightly equates the equation.

As L.H.S = R.H.S

So,

Does this check?

Answer: yes       ∵ L.H.S = R.H.S

<em>               </em><u><em>SOLVING QUESTIONS FROM 3RD PAGE</em></u>

  • Given the point D(2, 7)

y = 3x + 4

Putting x = 2, and y = 7 in y = 3x + 4

7 = 3(2) + 4

7 = 6 + 4

7 = 10         ∵Putting D(2, 7) in y = 3x + 4 does not equate the equation.

As L.H.S ≠ R.H.S

So,

Does this check?

Answer: no       ∵ L.H.S ≠ R.H.S

<em>                       </em><u><em>SOLVING QUESTIONS FROM 4th PAGE</em></u>

<em>b. Which function could have produced the values in the table.</em>

<em>A. y = 3x + 4                            </em>

<em>B. y = -2x + 18</em>

<em>C. y = 2x + 6</em>

<em>D. y = x + 9</em>

<em>The Table:</em>

<em>x             y</em>

3            12

6            18

9            24

<em>Checking A) y = 3x + 4</em>

<em>Putting (3, 12), (6, 18) and (9, 24) in y = 3x + 4</em>

For (3, 12)

y = 3x + 4

12 = 3(3) + 4

<em>12 = 13   </em>∵ L.H.S ≠ R.H.S

Does this check?

Answer: no       ∵ L.H.S ≠ R.H.S

For (6, 18)

18 = 3(6) + 4

18 = 18 + 4

<em>18 = 22   </em>∵ L.H.S ≠ R.H.S

Does this check?

Answer: no       ∵ L.H.S ≠ R.H.S

For (9, 24)

24 = 3(9) + 4

24 = 27 + 4

<em>24 = 31   </em>∵ L.H.S ≠ R.H.S

Does this check?

Answer: no       ∵ L.H.S ≠ R.H.S

So, the equation y = 3x + 4 could have not produced the all values in the table as the the ordered pairs in table do not satisfy(equate) the equation.

<em>Checking B) y = -2x + 18</em>

<em>Putting (3, 12), (6, 18) and (9, 24) in y = -2x + 18</em>

  • <em>For (3, 12) </em>⇒ y = -2x + 18 ⇒ 12 = -2(3) + 18 ⇒ 12 = 12 ⇒<em> L.H.S = R.HS</em>
  • <em>For (6, 18)</em> ⇒ y = -2x + 18 ⇒ 18 = -2(6) + 18 ⇒ 18 = 6 ⇒ <em>L.H.S ≠ R.HS</em>
  • <em>For (9, 24)</em> ⇒ y = -2x + 18 ⇒ 24 = -2(9) + 18 ⇒ 18 = 0 ⇒ <em>L.H.S ≠ R.HS</em>

So, y = -2x + 18 could have not produced all the values in the table, as (6, 18) does not equate the equation.

<em>Checking C) y = 2x + 6</em>

<em>Putting (3, 12), (6, 18) and (9, 24) in y = 2x + 6</em>

  • <em>For (3, 12) </em>⇒ y = 2x + 6 ⇒ 12 = 2(3) + 6 ⇒ 12 = 12 ⇒<em> L.H.S = R.HS</em>
  • <em>For (6, 18) </em>⇒ y = 2x + 6 ⇒ 18 = 2(6) + 6 ⇒ 18 = 18 ⇒<em> L.H.S = R.HS</em>
  • <em>For (9, 24) </em>⇒ y = 2x + 6 ⇒ 24 = 2(9) + 6 ⇒ 24 = 24 ⇒<em> L.H.S = R.HS</em>

So, y = 2x + 6 could have produced the values of in the table as all the orders pairs in the table satisfy/equate the equation.

<em>Checking D) y = x + 9</em>

<em>Putting (3, 12), (6, 18) and (9, 24) in y = x + 9</em>

  • <em>For (3, 12) </em>⇒ y = x + 9 ⇒ 12 = 3 + 9 ⇒ 12 = 12 ⇒<em> L.H.S = R.HS</em>
  • <em>For (6, 18) </em>⇒ y = x + 9 ⇒ 18 = 6 + 9 ⇒ 18 = 15 ⇒ <em>L.H.S ≠ R.HS</em>
  • <em>For (9, 24) </em>⇒ y = x + 9 ⇒ 24 = 9 + 9 ⇒ 24 = 18 ⇒<em> L.H.S ≠ R.HS</em>

So, y = x + 9 could have also not produced all the values in the table, as (6, 18) and (9, 24) do not satisfy/equate the equation.

So, from all the verification we conclude that:

<u>HENCE, ONLY </u><u>y = 2x + 6</u><u> COULD HAVE PRODUCED THE VALUES IN THE TABLE AS ALL THE ORDERED PAIRS OF THE TABLE SATISFY/EQUATE THE EQUATION.</u>

<em>                  </em><u><em>SOLVING QUESTIONS FROM 5th PAGE</em></u>

<em>What is the domain and range of the relation?</em>

{(-3, 7), (6, 2), (5, 1), (-9, -6)}

  • Domain: Domain is the set of all the x-coordinates of the ordered pairs of  the relation, meaning the all first elements of the ordered pairs in a relation include in the domain of the relation.
  • Range: Range is the set of all the y-coordinate of the ordered pairs of the relation, meaning the all second elements of the ordered pairs in a relation include in the range of the relation.

As the given relation is {(-3, 7), (6, 2), (5, 1), (-9, -6)}

The <em>domain</em> is: {-3, 6, 5, -9}

<em>Note: generally, we write the numbers in ascending order for both the domain and range.</em>

The domain could also be written in order as: {-9, -3, 5, 6}

The <em>range</em> is: {7, 2, 1, -6}

The range could also be written in order as: {-6, 1, 2, 7}

Keywords: equation, point, ordered pair, domain, range

Learn more about points and equation from brainly.com/question/12597810

<em>#learnwithBrainly</em>

8 0
3 years ago
Three teachers equally shared StartFraction 4 Over 5 EndFraction of a flat of paper that was donated to the school. What fractio
melisa1 [442]

Answer:

Each = \frac{4}{15}

Step-by-step explanation:

Given

Fraction = \frac{4}{5}

Teachers = 3

Required

Determine fraction of each teacher

Each fraction is calculated by dividing total fraction by number of teachers as follows:

Each = \frac{Fraction}{Teachers}

Each = \frac{4}{5}/3

Each = \frac{4}{5} * \frac{1}{3}

Each = \frac{4}{15}

4 0
3 years ago
Other questions:
  • A computer online service charges one hourly rate for regular use but a higher hourly rate for designated "premium" areas. One c
    13·1 answer
  • He park trail is 10x^2+4x+2 miles long. The hiker has traveled 5x-1 miles. How much farther does the hiker need to travel to get
    11·1 answer
  • PLEASE HELP GIVING AWAY 20 FREE POINTS AND BRAINLIEST FOR CORRECT ANSWERS!!!
    7·2 answers
  • The function h is defined by h(x)=2(x-7) what is the value of h(8)
    9·2 answers
  • 16,321,407.23 to the nearest tenth
    13·1 answer
  • (6,3) (4,8) in slope intercept form
    11·2 answers
  • 9 hundreds =equals <br><br> tens
    11·2 answers
  • Write 50,000+1,000+200+60+3 in standard form
    12·1 answer
  • If lin runs 21 laps at the same rate, how long does it take her 25.6 minutes How many laps per minute is that? __ laps
    9·1 answer
  • A weatherman predicted 17 inches of snow. The town actually got 1 and 1/2 feet of snow. By what percent was the weatherman’s pre
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!